%! TEX root = FC.tex % vim: tw=50 % 01/03/2025 12PM \begin{proof}[Proof of power set] \es{3}. \end{proof} \begin{visiblefc}{3e98ca0d0301} \begin{proof}[Proof of Replacement] \divcloze{ Since we already have Separation, it's enough to show the following: \begin{quote} if $\varphi$ is a functional formula and $x \in M[G]$, then there is $R \in M[G]$ such that \[ M[G] \models \forall y \in x, \exists z \in R, \varphi(y, z, \cancel{\ol{p}}) \tag{$*$} \label{lec11eq1} \] (as before, we suppress parameters for notational ease). \end{quote} We work in $M$ and identify a name $\rho$ for $R$. Fix $\sigma$ such that $x = \val(\sigma, G)$. Find $\alpha$ large enough such that $\dom(\sigma) \subseteq V_\alpha$. Consider $\psi(p, \pi) \defeq \exists \mu, p \forces \varphi(\pi, \mu)$ ($p \in \Pbb$, $\pi$ a name). By Definability Theorem, this is an $\mathcal{L}_\in$ formula. By \nameref{lrt}, find $\theta > \alpha$ such that $\psi$ is \gls{abs} between $V_\theta$ and $V = M$. Define \[ \rho \defeq \{(\mu, \mathbbm{1}) : \mu \in V_\theta\} \] and $R \defeq \val(\rho, G)$. Now we verify \eqref{lec11eq1} holds: Fix $y \in x$, $y = \val(\pi, G)$. Since $\varphi$ is functional, we know that $\varphi(\pi, \mu)$ holds in $M[G]$ for some $\mu$. By Forcing Theorem, there is $p \in G$ such that $p \forces \varphi(\pi, \mu)$. So $M \models \psi(p, \pi)$. By \gls{abs}ness, $V_\theta \models \psi(p, \pi)$. This means $\exists \mu \in V_\theta$ such that $p \forces \varphi(\pi, \mu)$. Thus: $\val(\mu, G) \in \val(\rho, G) = R$. } \end{proof} \end{visiblefc} \begin{fcdefnstar}[Dense below $p$] \glsadjdefn{dbel}{dense below}{filter}% $D \subseteq \Pbb$ is called \emph{dense below $p$} if $\forall q \le p, \exists r \le q, r \in D$. \end{fcdefnstar} \begin{fclemma}[] \label{lec11lemmalots} Assuming: - $G$ is \dgen[\Pbb] over $M$ - $E \subseteq \Pbb$ - $E \in M$ Thens:[(i)] - If $E$ is \gls{dbel} $p$, $q \le p$, then $E$ is \gls{dbel} $q$. - If $\{r : \text{$E$ is \gls{dbel} $r$}\}$ is \gls{dbel} $p$, then $E$ is \gls{dbel} $p$ - Either $G \cap E \neq \emptyset$ or $\exists q \in G$, $\forall r \in E, r \perp q$. - If $p \in G$, $E$ is \gls{dbel} $p$, then $G \cap E \neq \emptyset$. \end{fclemma} \noproof \begin{proof} \es{3} \end{proof} \subsubsection*{Definition of the syntactic forcing relation} $p \forces^* \varphi(\ol{\tau})$. Two recursions: First ``$\forces^* =$'' by recursion on $\Name_\alpha$. Then ``$\forces^* \in$'' without recursion. Then the rest by recursion on formula complexity. $p \forces^* \tau_0 = \tau_1$: if and only if \begin{align*} \forall (\pi_0, s_0) \in \tau_0 & \\ &\{q \le p : q \le s_0 \to \exists (\pi_1, s_1) \in \tau_1, (q \le s_1 \wedge q \forces^* \pi_0 = \pi_1)\} \\ &\text{is \gls{dbel} $p$} \end{align*} and \begin{align*} \forall (\pi_1, s_1) \in \tau_1 & \\ &\{q \le p : q \le s_1 \to \exists (\pi_0, s_0) \in \tau_0, (q \le s_0 \wedge q \forces^* \pi_0 = \pi_1)\} \\ &\text{is \gls{dbel} $p$} \end{align*} \begin{remark*} This is a recursion on $\Name_\alpha$. \end{remark*} $p \forces^* \tau_0 \in \tau_1$: if and only if \[ \{q \le p : \exists (\pi, s) \in \tau_1, (q \le s \wedge q \forces^* \pi = \tau_0)\} \] is \gls{dbel} $p$. \begin{remark*} No recursion involved, just ``$\forces^* =$''. \end{remark*} Recursion on complexity of formulas: \begin{itemize} \item $p \forces^* \varphi \wedge \psi$: if and only if $p \forces^* \varphi$ and $p \forces^* \psi$. \item $p \forces^* \neg \varphi$: if and only if $\forall q \le p$, $q \not \forces^* \varphi$. \item $p \forces^* \exists x, \varphi(x)$: if and only if $\{r : \exists \sigma, r \forces^* \varphi(\sigma)\}$. \end{itemize} \begin{remark*} These definitions remind us of Kripke semantics for intuitionistic logic. \end{remark*} \begin{fclemma}[] The following are equivalent: \begin{enumerate}[(i)] \item $p \forces^* \varphi$. \item $\forall r \le p, r \forces^* \varphi$. \item $\{r : r \forces^* \varphi\}$ is \gls{dbel} $\rho$. \end{enumerate} \end{fclemma} \begin{proof} If this is true for $\varphi$ of the form $\tau_0 = \tau_1$ and of the form $\tau_0 \in \tau_1$, then it's true for all formulas. For $\varphi$ atomic, we get that (ii) $\implies$ (i) and (ii) $\implies$ (iii) are trivial. (i) $\implies$ (ii) follows from \cref{lec11lemmalots}(i). (iii) $\implies$ (i) follows from \cref{lec11lemmalots}(ii). \end{proof} \textbf{Strategy:} \begin{fcthm}[Syntactic Forcing Theorem] \label{synFT} \begin{iffc} \lhs $M[G] \models \varphi$ \rhs $\exists p \in G, M \models r \forces^* \varphi$. \end{iffc} \end{fcthm} \noproof \begin{fccoro}[Definability Theorem] \label{lec11coro1} \begin{iffc} \lhs $p \forces \varphi$ \rhs $p \forces^* \varphi$. \end{iffc} \end{fccoro} \noproof ($p \forces_M \varphi \iff M \models p \forces^* \varphi$) \begin{fccoro}[Forcing Theorem] \begin{iffc} \lhs $M[G] \models \varphi$ \rhs $\exists p \in G, p \forces \varphi$. \end{iffc} \end{fccoro} \noproof This corollary is immediate from combining the two previously stated results. \begin{proof}[Proof of Definability Theorem from Syntactic Forcing Theorem] \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Leftarrow$] This is just \nameref{synFT}. \item[$\Rightarrow$] Suppose $p \forces \varphi$. By \cref{lec11lemmalots}, we need to show \[ \{r \le p : r \forces^* \varphi\} \] is \gls{dbel} $p$. Suppose not. Then I find $q \le p$ such that $\forall r \le q$, $r \not \forces^* \varphi$. So $q \forces^* \neg\varphi$. If $q \in G$, then $p \in G$. Since $p \forces \varphi$, $M[G] \models \varphi$. Since $q \forces^* \neg \varphi$, $M[G] \models \neg \varphi$. Contradiction! \qedhere \end{enumerate} \end{proof} \begin{proof}[Proof of the Syntactic Forcing Theorem] The Theorem for $=$ can be proved by induction on $\Name_\alpha$. The Theorem for $\in$ can be proved once the Theorem has been established for $=$. Rest is induction on formula complexity. Let's do $\neg$ and leave the rest to \es{3}. Assume we have proved it for $\varphi$. We will prove it for $\neg \varphi$. \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] $M[G] \forces \neg \varphi$. Consider \[ D \defeq \{p : p \forces^* \varphi \text{ or } p \forces^* \neg \varphi\} .\] By definition of $\forces^* \neg$, this is \gls{dense}. Find $p \in G \cap D$. By assumption, $p \not\forces^* \varphi$, so $p \forces^* \neg \varphi$. \item[$\Leftarrow$] Let $p \in G$ such that $p \forces^* \neg \varphi$. By definition, $\forall q \le p$, $q \not\forces^* \varphi$. If $M[G] \not \models \neg \varphi$, thus $M[G] \models \varphi$. By induction hypothesis, find $r \in G$, $r \forces^* \varphi$. So $q \le r, p, q \in G$. By Lemma, $q \forces^* \varphi$, contradiction to $\forall q \le p, q \not\forces^* \varphi$. \end{enumerate} \end{proof}