%! TEX root = FC.tex % vim: tw=50 % 25/02/2025 12PM TODO \subsubsection*{Further Recap} We proved \[ M[G] \models \text{Extensionality + Foundation + Pairing + Union} .\] Homework was: Think about why power set is not easy. ``Union'' proof was: collect all natural candidates of names for elements and assign the natural values. Problem: If you try to do this for power set, neither the ``natural candidates for names'' nor the ``natural values'' are obvious. It'll turn out that they \emph{are} obvious in the end, but that requires some assistance. Note: Separation and Replacement are even worse. One remaining easy axiom: $\ac$. By well-ordering theorem, $\ac$ holds if and only if $\forall x, \exists \alpha, \exists i, i : x \to \alpha$ injection. If $x \in M[F]$, then there is $\sigma \in \Name$ such that $x = \val(\sigma, F)$. \begin{notation*} I write $\dom(\sigma) \defeq \{\tau : \exists p, (\tau, p) \in \sigma\}$. \end{notation*} Consider $\dom(\sigma)$. In $M$, I have $i : \dom(\sigma) \to \alpha$ for some ordinal $\alpha$. In $M[F]$, define \[ y \mapsto \min \{i(\tau) : \val(\tau, F) = y, \tau \in \dom(\sigma)\} .\] Call this $i^*$. Then $i^* : x \to \alpha$ is an injection. So, $\ac$ holds in $M[F]$. \subsubsection*{Forcing} \begin{fcdefnstar}[Forcing language] \glsnoundefn{fl}{forcing language}{forcing languages}% Fix $M$ a \gls{ctm} of $\zfc$, $\Pbb \in M$ a \gls{forcing} poset. We call the language \[ \mathcal{L}_{\text{forcing}} \defeq \mathcal{L}_{\in} \cup \{\tau : \textbf{$\Pbb$-names}\} \] the \emph{forcing language (over $M$)}. \end{fcdefnstar} \begin{fcdefnstar}[Interpretation of forcing language] If $G$ is a \dgen[\Pbb] over $M$ and $\varphi$ is in the forcing language, we say \[ M[G] \models \varphi \] if and only if \[ M[G], v \models \varphi \] where $v(\tau) \defeq \val(\tau, G)$. \end{fcdefnstar} \begin{fcdefnstar}[Semantic forcing predicate] \glssymboldefn{forcing}% $p \Vdash_{M, \Pbb} \varphi$: Forall $G$ \dgen[\Pbb] over $M$ with $p \in G$, $M[G] \models \varphi$. ``$p$ forces $\varphi$'' We often omit $M, \Pbb$. \end{fcdefnstar} Two theorems at the heart of forcing: \begin{enumerate}[(1)] \item \textbf{Forcing Theorem:} If $G$ is a \dgen[\Pbb] over $M$, then \[ M[G] \models \varphi \iff \exists p \in G, p \forces \varphi .\] \item \textbf{Definability Theorem:} ``$p \forces \varphi$'' is \gls{abs}ly definable for transitive models containing $M$. \end{enumerate} We are going to do the following: \begin{enumerate}[(a)] \item Define the \emph{syntactic forcing predicate} $\Vdash^*$ that is \gls{abs}ly definable. \item Prove the Forcing Theorem for $\Vdash^*$. \item Derive that $\forces \iff \Vdash^*$. \end{enumerate} Lectures 11 and 12. Observations (under the assumption of the Forcing Theorem): \begin{enumerate}[(1)] \item If $q \le p$ and $p \forces \varphi$, then $q \forces \varphi$. \item If $p \forces \exists x, \varphi$, then there is a name $\tau$ and $q \le p$ such that $q \forces \varphi(\tau)$. [if $p \forces \exists x, \varphi(x)$ and $p \in G$, then by definition $M[G] \models \exists x, \varphi(x)$, so there is a name $\tau$ such that $M[G] \models \varphi(\tau)$. By Forcing Theorem, find $r \in G$ such that $r \forces \varphi(\tau)$. Find $q \le p, r$, $q \in G$. By (1), $q \forces \varphi(\tau)$. ] \end{enumerate} \begin{proof}[Proof of Separation in {$M[G]$}] Let $\varphi(x, x_1, \ldots, x_n)$ be an $\mathcal{L}_{\in}$-formula (not in the \gls{fl}) and $x \in M[G]$. Need a name for \[ A \defeq \{z \in x : M[G] \models \varphi(z, \ol{p})\} .\] [For readability, we now drop parameters $\ol{p}$]. Fix $\sigma$ such that $\val(\sigma, G) = x$. Define \[ \varrho \defeq \{(\pi, p) : \pi \in \dom(\sigma) \wedge p \forces \pi \in \sigma \wedge \varphi(\pi)\} .\] By the Definability Theorem, $\varrho$ is a name in $M$. Claim: $\val(\varrho, G) = A$. \begin{enumerate}[``$\subseteq$''] \item[``$\subseteq$''] If $z \in \val(\varrho, G)$, then there is $(\pi, p) \in \varrho$ such that $z = \val(\pi, G)$, $p \in G$. Since $(\pi, p) \in \varrho$, we get $\pi \in \dom(\sigma)$, $p \forces \pi \in \sigma \wedge \varphi(\pi)$. Together with $p \in G$, we get \[ M[G] \models \ub{\pi \in \sigma \wedge \varphi(\pi)}_{z \in x \wedge \varphi(z)} .\] Hence $z \in A$. \item[``$\supseteq$''] If $z \in A$, then $z \in x$ and $M[G] \models \varphi(z)$. So there is $\pi \in \dom(\sigma)$, $z = \val(\pi, G)$. By the Forcing THeorem, $\exists p \in G$, $p \forces \varphi(\pi)$. Also, there is $q \in G$ and $q \forces \pi \in \sigma$. Find $r \in G$, $r \le p, q$ such that $r \forces \pi \in r \wedge \varphi(\pi)$. Hence $(\pi, r) \in \varrho$, so $z = \val(\pi, G) \in \val(\varrho, G)$. \qedhere \end{enumerate} \end{proof}