Lemma 3.18.
Assuming that:
G
is
ℙ
-generic
over
M
E
⊆
ℙ
E
∈
M
Then
(i)
If
E
is
dense below
p
,
q
≤
p
, then
E
is
dense below
q
.
(ii)
If
{
r
:
E
is
dense below
r
}
is
dense below
p
, then
E
is
dense below
p
(iii)
Either
G
∩
E
≠
∅
or
∃
q
∈
G
,
∀
r
∈
E
,
r
⊥
q
.
(iv)
If
p
∈
G
,
E
is
dense below
p
, then
G
∩
E
≠
∅
.