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1 The Continuum Hypothesis

1398: Gödel showed Con(ZFC) =⇒ Con(ZFC + CH).

1962: Cohen showed Con(ZFC) =⇒ Con(ZFC + ¬CH).

Theorem (Hartogs’s Theorem). For every set X, there is a (least) cardinal α such that there
is no injection from α to X.

We denote this by Hartogs’s aleph of X, ℵ(X).

Theorem. For every set X, there is no injection from P(X) into X. We denote this by 2|X|.

Using Axiom of Choice, well-order P(X) and get ordinal 2|X|.

We have
ℵ(X) ≤ 2|X|.

Notation. Define:

ℵ0 := N
ℵα+1 := ℵ(ℵα)

ℵλ :=
⋃
α<λ

ℵα

i0 = N
iα+1 = 2iα

iλ =
⋃
α<λ

iα

Clearly, ℵα ≤ iα.

Continuum Hypothesis (CH): ℵ1 = i1.

Generalised Continuum Hypothesis (GCH): ∀αℵα = iα.

Why “continuum”?

Lemma. CH if and only if ∀X ⊆ R, X is uncountable =⇒ X ∼ R (∼ means “there is a
bijection”).

Proof.
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⇒ Obvious since i1 = |R|.

⇐ Suppose |R| > ℵ1. Well-order the reals in order type κ > ℵ1:

{rα : α < κ}.

Consider X := {rα : α < w1} ⊆ R. This is a subset of the reals of cardinality ℵ1, hence is an
uncountable subset which is not in bijection with it.

Reminder:

Gödel showed Con(ZFC) =⇒ Con(ZFC + CH).

Cohen showed Con(ZFC) =⇒ Con(ZFC + ¬CH).

Relative consistency proofs.

By Completeness Theorem, this means:

If there is M |= ZFC, then I can construct N |= ZFC + (¬)CH.

Analogy from algebra:
Lfields = {0, 1,+, ·,−,−1}.

Axioms of fields: Fields.

Let ϕ√
2 := ∃x(x · x = 1 + 1). Note Q |= ¬ϕ√

2.

Idea: Start with Q and extend Q to get F |= Fields + ϕ√
2.

Construct by algebraic closure (not in the usual sense – here we just mean adding in
√
2 and then

adding everything else that this requires us to add).

Obtain Q(
√
2) |= Fields + ϕ√

2.

This is easy because everything that matters (Fields and ϕ√
2) is determined by equations; all formulas

we need to check are atomic.

Definition 1.1 (absolute). If M ⊆ N and M,N are L-structures and ϕ an L-formula, then we
say ϕ is absolute between M and N if for all x1, . . . , xm ∈M ,

M |= ϕ(x1, . . . , xn) ⇐⇒ N |= ϕ(x1, . . . , xn).

If the ⇒ direction holds, then we say “upwards absolute”, and if the ⇐ direction holds, then
we say “downwards absolute”.

Theorem (Substructure Lemma). All atomic formulas are absolute between substructures.
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WHat if we have models of ZFC? Have
L∈ = {∈}.

No function symbols nor constant symbols. So: almost nothing is atomic.

M ⊆ N if and only if M is an L∈-substructure of N .

And: the formulas that we care about are definitely not atomic, but instead very complex.

Try to imagine a proof of:

If M |= ZFC then there is N ⊇M such that N |= ZFC + CH.

Without loss of generality M |= ¬CH (else we are done). For simplicity, let’s consider the case i1 = ℵ2.

What can we do to “get rid of ℵ1”?

Maybe a surjection f : N → ℵ1. Maybe we can form M [f ] ⊇M to get a smallest model M [f ] |= ZFC.

Clearly, in M [f ], ℵM1 is not a cardinal anymore.

Does that show CH?

All sorts of things can happen

Assuming it is actually possible to form this smallest model M [f ], there are lots of ways that this
might not end up being enough to deduce CH. For example:

• Maybe RM [f ] 6= RM

• Maybe ℵM2 is not a cardinal either

A fundamental problem of non-absoluteness

Consider ϕ∅(x) := ∀z(z /∈ x), which means “x is empty”.

Consider M |= ZFC. Therefore there are e, e′ such that M |= ϕ∅(e) and M |= ∀z(z ∈ e′ ⇐⇒ z = e).
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Consider N :=M \ {e}.

N is an L∈-substructure of M . But N |= ϕ∅(e
′), even though M |= ¬ϕ∅(e

′).

So ϕ∅ is not absolute between substructures.

Instead of substructures, we will restrict out attention to transitive substructures: in particular, to M
transitive (∀x, x ∈M =⇒ x ⊆M or equivalently x ∈M ∧ y ∈ x =⇒ y ∈M) such that M |= ZFC.

Next time: theorems about absoluteness for transitive substructures.Lecture 2

Definition (Absolute formula). We say ϕ is absolute for M if for all x1, . . . , xn ∈M , we have

M |= ϕ(x1, . . . , xn) ⇐⇒ ϕ(x1, . . . , xn) is true.

Clearly, if ϕ is absolute for M and absolute for N , then it’s absolute between M and N .

Cohen’s proof becomes:

If M is a countable transitive set such that M |= ZFC, then there is a a countable transitive set N ⊇M
such that N |= ZFC + ¬CH.
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2 Transitive Models

Observation: If M is transitive and M |= “e is empty”, then e = ∅. This is because if w ∈ e, then
w ∈ e and e ∈M gives us that w ∈M by transitivity, so M |= w ∈ e, so M |= “e is not empty”.

Lemma. Assuming that:

• M is transitive

Then
M |= Extensionality + Foundation.

Proof. Extensionality: ∀x∀y(∀w(w ∈ x ↔ w ∈ y) → x = y). Take x 6= y, x, y ∈ M . Without loss
of generality take z ∈ x \ y. Then z ∈ x and x ∈ M so z ∈ M . So M |= z ∈ x ∧ z /∈ y. So
M |= ¬∀w(w ∈ x↔ w ∈ y).

Foundation: ∀x(x 6= ∅ → ∃m(m ∈ x ∧ ∀w¬(w ∈ m ∧ w ∈ x))). Take x ∈ M . M |= x 6= ∅ so x is not
empty. So find m ∈ x which is ∈-minimal. Then since x ∈ M as well, we have m ∈ M . Therefore x
has an ∈-minimal element in M .

2.1 Absoluteness for transitive models

Definition (Bounded quantifier). We call a quantifier of the form ∃x ∈ y, ϕ or ∀x ∈ y, ϕ a
bounded quantifier.
(Defined by ∃x ∈ y, ϕ := ∃x(x ∈ y ∧ ϕ) and ∀x ∈ yϕ := ∀x(x ∈ y → ϕ)).

Definition (Closed under bounded quantification). A class of formulas Γ is closed under
bounded quantification if whenever ϕ is in Γ, then so are ∃x ∈ y, ϕ and ∀x ∈ y, ϕ.

Definition (Delta0). ∆0 is the smallest class of formulas containing the atomic formulas that
is closed under propositional connectives and bounded quantifiers.
Let T be any theory. Then ∆T

0 is the class of formulas equivalent to a ∆0 formula in T .

Theorem. ∆0 formulas are absolute for transitive models.

Proof. By induction:

(1) All atomic formulas are absolute by the substructure lemma.

(2) Propositional connectives: exactly the same proof as in the substructure lemma.
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(3) Assume that ϕ is absolute and show that ∃x ∈ y, ϕ and ∀x ∈ y, ϕ are absolute.

• ∃x ∈ y, ϕ: If ∃x ∈ y, ϕ is true for some y ∈ M , then pick a witness x ∈ y. Since y ∈ M , we
have x ∈ M . By the induction hypothesis, we have that M |= ϕ(x, y). Thus M |= ∃x(x ∈
y ∧ ϕ(x, y)).
If M |= ∃x(x ∈ y ∧ ϕ(x, y)), then x ∈ y ∧ ϕ(x, y) is true.

• ∀x ∈ y, ϕ: Similar.

Corollary. Assuming that:

• T is any theory

• M |= T is transitive

Then ∆T
0 -formulas are absolute for M .

Definition (Sigma1, Pi1). A formula is called Σ1 if it is of the form ∃x1, . . . ∃xn, ϕ where ϕ
is ∆0.
It is called Π1 if it is of the form ∀x1, . . . , ∀xn, ϕ where ϕ is ∆0.

(same for ΣT1 , ΠT1 ).

Proof. Just definition of the semantics of ∃,∀.

Example. What is ∆0?

1. x ∈ y

2. x = y

3. x ⊆ y: ⇐⇒ ∀w ∈ x(w ∈ y)

4. z = {x}: ⇐⇒ x ∈ z ∧ ∀w ∈ z(w = x)

5. z = {x, y}

6. z = (x, y) = {{x}, {x, y}}

7. z = ∅: ⇐⇒ ∀w ∈ z(w 6= w)

8. z = x ∪ y: ⇐⇒ x ⊆ z ∧ y ⊆ z ∧ ∀w ∈ z(w ∈ x ∨ w ∈ y)

9. z = x ∩ y

10. z = x \ y

11. z = x ∪ {x}
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12. z is transitive

13. z =
⋃
x

Definition (Absolute function). Let M a transitive set, and F : Mn → M (note that this
means that M is closed under F ). We say F is absolute for M if there is a formula Φ which is
absolute for M such that

F (x1, . . . , xn) = z ⇐⇒ Φ(x1, . . . , xn, z).

Observation: So, if M is closed under pairing (∀x, y ∈ M, {x, y} ∈ M), then the pairing operation
x, y 7→ {x, y} is absolute, and therefore M |= Pairing.

Similarly for union.

Lemma. Assuming that:

• ϕ is absolute for M

• F,G1, . . . , Gn are absolute operations on M

Then

ψ(x1, . . . , xm) := ϕ(G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm))

H(x1, . . . , xm) := F (G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm))

are absolute for M .

Proof. Check the definitions!

Example. More examples:

(14) z is an ordered pair:

∃s ∈ z,∃d ∈ z,∃x ∈ s,∃y ∈ d, (∀w ∈ s, (w = x)∧∀v ∈ d, (v = x∧v = y)∧∀w ∈ z, (w = s∨w = d)).

(15) z = a× b

(16) z is a relation

(17) z = domx

(18) z = rangex

(19) z is a function
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(20) z is injective

(21) z is surjective

(22) z is bijective
Lecture 3

Ordinals

“x is an ordinal” means x is transitive and (x,∈) is a well-order.

We know: being well-founded is not expressible in first-order logic (see Example Sheet 1).

Because all transitive models satisfy Foundation, we have that if M is transitive, then

M |= x is transitive ∧ (x,∈) is linearly ordered.

characterises ordinals. But this is clearly in ∆0.

So: being an ordinal is absolute for transitive models.

Thus M ∩Ord = {x ∈ M : M |= x is an ordinal}. This is transitive, thus there is α ∈ Ord such that
α =M ∩Ord.

Also absolute:

• “x is a successor ordinal” (∃y ∈ TODO)

• “x is a limit ordinal”

• “x is a non-zero limit ordinal”

• x = ω TODO

Cardinals

“x is a cardinal” if and only if

x is an ordinal ∧ ∀f, ∀y ∈ x, f : y → x =⇒ f is not a surjection

Note that ∀f is not bounded (while ∀y ∈ x is bounded).

Observe: this is Π1 and therefore downwards absolute.
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Remark.

(1) We may not want this to be absolute. If it was, we couldn’t change cardinal behaviour.

(2) We can’t obviously bound ∀f , since the natural bound would be

{h : h→ y → x}

or
P(y × x).

These, however, are not (yet??) on our list of absolute concepts.

(3) Not that neither (1) nor (2) is an argument, since there could be an equivalent formula that
is ∆0.

2.2 Non-absoluteness

Assume that M |= ZFC is transitive and countable. Then

M ∩Ord = α < ω1.

However, M |= ZFC implies M |= there are uncountable cardinals.

Let β < α be such that M |= β is the least uncountable cardinal.

But β is a countable ordinal, so not a cardinal.

Consequence: All cardinals in M except ℵ0 are going to be fake.

So “x is a cardinal” can’t be absolute.

Note. This also shows that “x = P(y)” cannot be absolute:
Take y such that M |= y = P(ω). Then y ⊆ P(ω), but is countable since y ⊆M .
Thus y 6= P(ω). Therefore “x = P(y)” is not absolute.

Recall the general proof strategy mentioned before:

If M is a countable transitive set such that M |= ZFC, then there is a a countable transitive
set N ⊇M such that N |= ZFC + ¬CH.

Question: Is this really solving the original problem? i.e. Con(ZFC) =⇒ Con(ZFC + ¬CH).

It’s not obvious that Con(ZFC) implies that there is a countable transitive model (ctm) of ZFC.

Answer: That’s not only not obvious, but fake.
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Let’s prove that Con(ZFC) 6 =⇒ there is a countable transitive model of ZFC.

Why? Note that Con(ZFC), or Con(T ) for any T is ∆0. So, it’s absolute for transitive models.

So if M is a countable transitive model of ZFC, then Con(ZFC) is true, so by absoluteness, M |=
Con(ZFC). So M |= ZFC +Con(ZFC). This contradicts Gödel’s Incompleteness Theorem.

We can get a proof of
Con(ZFC) =⇒ Con(ZFC + ¬CH)

via a trick (Example Sheet 1).

Lemma (Cohen Lemma). Assuming that:

• T ⊆ ZFC

Then there is finite T ∗ ⊆ ZFC such that if M is a countable transitive model of T ∗, then there
is N ⊇M such that N is a countable transitive model of T + ¬CH.

This reduces the problem to:

Find countable transitive models of T ∗ for sufficiently large finite T ∗ ⊆ ZFC.

Definition (Hierarchy). We call an assignment α 7→ Zα a hierarchy if

(i) Zα is a transitive set

(ii) Ord∩Zα = α

(iii) α < β =⇒ Zα ⊆ Zβ

(iv) λ limit =⇒ Zλ =
⋃
α<λ Zα

If {Zα : α ∈ Ord} is a hierarchy, we can define Z :=
⋃
α∈Ord Zα. This is a proper class as

Ord ⊆ Z. We also define ρZ(x) := min{α : x ∈ Zα}, a notion of Z-rank.

Paradigmatic example: von Neumann hierarchy Vα, and V is the entire universe.

Theorem 2.1 (Levy Reflection Theorem). Assuming that:

• Z is a hierarchy

• ϕ is a formula

Then there are unboundedly many θ such that ϕ is absolute between Zθ and Z.

Proposition 2.2 (Tarski-Vaught Test). Assuming that:

• M is a substructure of N
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Then M is an elementary substructure if and only if for any formula φ(v, w) and a ∈ M , if
there is b ∈ N such that N |= φ(b, a), then there is c ∈M such that N |= φ(c, a).

TVTΦ:

Let M ⊆ N and Φ be a collection of formulas closed under subformulas. Then the following are
equivalent:

(i) All formulas in Φ are absolute between M and N .

(ii) For all ϕ ∈ Φ, the TV-condition holds: if ϕ = ∃xψ, then for all y ∈ M if there is a ∈ N sucht
hat N |= ψ(a, y), then there is b ∈M such that N |= ψ(b, y).

Lecture 4
Warm-up: let (M,∈) |= ZFC. Find countable N ⊆M such that (N,∈) ≺ (M,∈).

Suppose p = (p0, . . . , pn) ∈M and M |= ∃y, ψ(y, p). Let w(ψ, p) be a witness for this:

M |= ψ(w(ψ, p), p)

(if necessary, use Axiom of Choice).

(if M |= ¬∃y, ψ(y, p), then let w(ψ, p) = ∅).

Set:

N0 := ∅
Ni+1 := {w(ψ, p) : ψ formula and p ∈ N<ω

1 }

N :=
⋃
i∈ω

Ni

Note:

(1) N is countable.

(2) M ≺ N by Tarski-Vaught Test.

Remark. In general, even if M is transitive, N is not.
For example, if ω1 ∈M , then

∃x, (x is the least countable ordinal)

is true in M .
w(ψ, ∅) = ω1.

So ω1 ∈ N . But ω1 ⊆ N , since N is countable.
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Relevant later!

Also see Example Sheet 1.

Proof of Levy Reflection Theorem. Fix ϕ and let Φ be its collection of subformulas. This is a finite
set!

Need to show: ∀α, ∃θ > α such that Zθ |= ϕ ⇐⇒ Z |= ϕ.

For each ψ ∈ Φ and p = (p0, . . . , pn), write

o(ψ, p) :=

®
least α such that ∃y ∈ Zα with Z |= ψ(y, p) if it exists
0 otherwise

o(p) := max
ψ∈Φ

o(ψ, p)

θ0 := α+ 1

θi+1 := sup{o(p) : p ∈ Z<ωθi }
θ := sup

i∈ω
θi

Then Tarski-Vaught Test implies that Zθ and Z agree on ϕ.

Corollary. If T ⊆ ZFC is finite, then there is M transitive such that M |= T .

Proof. Let ϕ :=
∧
ψ∈T ψ. Since ZFC ` ϕ, we have that ϕ is true. By Levy Reflection Theorem, we can

find θ such that Vθ |= ϕ. Note Vθ is transitive.

Remark about the proof of Levy Reflection Theorem:

Can you do the same if Φ is infinite?

Of course not: otherwise we colud prove that there exists θ such that Vθ |= ZFC, and hence get
Con(ZFC).

The problem is the case distinction in the definition of o(ψ, p): it requires to check whether ∃y, ψ is
true.

Next goal: Obtain some M ⊆ Vθ countable such that M |= ϕ and M is transitive.

TODO

Theorem (Mostowski’s Collapsing Theorem). Let r be a relation on a set a that is well-
founded and extensional. Then there exists a transitive set b, adn a bijection f : a → b such
that (∀x, y ∈ a)(x r y ⇐⇒ f(x) ∈ f(y)). Moreover, b and f are unique.

13

https://www.maths.cam.ac.uk/undergrad/examplesheets


Proof. See Logic and Set Theory.

Corollary. For every T ⊆ ZFC finite, there is a countable transitive model of T .

Proof. Without loss of generality that T contains the axiom of extensionality. Form M |= T transitive
by Levy Reflection Theorem.

Use warm-up to obtain N ≺M countable. This is extensional and well-founded, so by Mostowski find
W transitive such that

(W,∈) ∼= (N,∈).

Then W |= T adn |W | = ||, so W is countable.

The next few lectures will be spent proving Con(ZFC + CH) using Gödel’s constructible universe.

Absoluteness is preserved under transfinite recursion.

Let F,G,H be three operations.

R(0, x) := F (x)

R(α+ 1, x) := G(α,R(α, x), x)

R(λ, x) := H(λ, {R(α, x) : α < λ}, x) (∗)

Proof. Attempts: set functions satisfying the (∗).

L1 All attempts agree on their common domain.

L2 ∀α, ∃r attempt such that (α, x) ∈ dom(r).

R(α, x) := y if and only if there exists attempt r with (α, x) ∈ dom(r) and r(α, x) = y.

Note that for F,G,H fixed, there is a finite fragment TF,G,H ⊆ ZFC that proves the recursion theorem
instance for F,G,H.

Theorem. If T ⊇ TF,G,H and F,G,H are absolute for transitive models of T , then so is R
defined by (∗).

Lecture 5
Want TF,G,H ` L1(F,G,H), TF,G,H ` L2(F,G,H) and TF,G,H proves existence of R.

Convention: We say “T is sufficiently strong” if T ⊆ ZFC is finite and T proves hte existence of all
relevant operations such that they are absolute for transitive models of T .
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Proof. Observe that by assumption, being an “attempt” is absolute for transitive models of T .

Let M |= T be transitive.

(1) To show: If M |= R(α, x) = z, then R(α, x) = z.
If M |= R(α, x) = z, then M |= ∃r, r is an attempt and r(α, x) = z. Without the ∃r, this would
be absolute. So when we include the existential quantifier, we get an upwards absolute sentence.
Thus: there is r such that r is an attempt and r(α, x) = z. So R(α, x) = z.

(2) Other direction. Assume r is an attempt with r(α, x) = z.
Since TF,G,H ` L2(F,G,H), we have

M |= ∃r′, r′ is an attempt and (α, x) ∈ dom r′︸ ︷︷ ︸
absolute

.

Since it is absolute, r′ is a real attempt.
By ???, r′(α, x) = r(α, x). Hence M |= R(α, x) = z.

Note. This uses the fact that “∆1” concepts are absolute.

Definition (Delta1T property). A property is called ∆T
1 if it’s both Σ1

T and Π1
T .

Observe: ∆T
0 concepts are absolute (upwards from Σ1 and downwards from Π1).

Typical Applications

Bounding a quantifier by operation.

Let F be an operation and T strong enough to prove F is an operation and absolute.

T ` ∀x, ∃z, F (x) = z

T ` ∀x, ∀z,∀z′, F (x) = z ∧ F (x) = z′ → z = z′

Then the quantifiers ∃y ∈ F (x) and ∀y ∈ F (x) preserve absoluteness.

∃y ∈ F (x)ψ ⇐⇒ ∃z (z = F (x) ∧ ∃y ∈ zψ)︸ ︷︷ ︸
absolute︸ ︷︷ ︸

upwards absolute

⇐⇒ ∀z (z = F (x) → ∃y ∈ zψ)︸ ︷︷ ︸
absolute︸ ︷︷ ︸

downwards absolute
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Applications

(1) Encode formulas as elements of ω<ω.

∈ = ( ) ∧ ∨ ¬ ∃ ∀ v0 v1 v2 · · ·
0 1 2 3 4 5 6 7 8 9 10 11 · · ·

∀v0∃v1¬v0 ∈ v1 would be (8, 9, 7, 10, 6, 8, 0, 10).
Fml ⊆ ω<ω. So, Fml is absolute for some (sufficiently strong) finite fragment of ZFC (see Example
Sheet 1).

(2) If X is any set then
“X |= ϕ”

(which means “(X,∈) |= ϕ”) is defined by the usual (Tarski) recursion and thus also absolute
(Example Sheet 1).

2.3 The constructible hierarchy

Fix a set X. Define for each ϕ ∈ Fml and each p ∈ X<ω (parameter)

D(ϕ, p,X) := {w ∈ X : X |= ϕ(p, w)}

the subset of X defined by ϕ with parameter p.

For a sufficiently strong T ⊆ ZFC finite, we have that T proves that D is an absolute operation (see
Example Sheet 1).

D(X) := {D(ϕ, p,X) : ϕ ∈ Fml, p ∈ X<ω}.

This is absolute for a sufficiently strong theory (use Replacement to get D(X)).

This D(X) is sometimes (misleadingly) called the “definable power set of X” (it is misleading because
it is more like a “definable (by X) power set of X”).

(α ∈ D(X) ⇐⇒ ∃ϕ ∈ Fml,∃p ∈ X<ω, a = D(ϕ, p,X))

Obvious: D(X) ⊆ P(X). Also: If X is transitive, then so is D(X).

L0 := ∅
Lα+1 := D(Lα)

Lλ =
⋃
α<λ

Lα

The constructible hierarchy.

We usually write L :=
⋂
α∈Ord Lα.
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Claim: L is a hierarchy (in the sense of Lecture). See Example Sheet 1.

By closure of absoluteness under transfinite recursion, the L-hierarchy is absolute for transitive models
of T ⊆ ZFC where T is strong enough to prove that it exists.

i.e. if M |= T transitive and α ∈ Ord∩M and M |= X = Lα, then X = Lα. So⋃
α∈Ord∩M

Lα ⊆M.

The main theorem of next lecture will be:

If L |= ZF and M |= ZF transitive, then ⋃
α∈Ord∩M

Lα |= ZF.

(Minimal ZF-model).

Some first idea of what the L-hierarchy is like

Clearly, by induction, Lα ⊆ Vα, and clearly for n ∈ ω, Ln = Vn. So Lω = Vω.

Lα+1 :=
⋃

ϕ∈Fml

⋃
p∈L<ω

α

{D(ϕ, p, Lα)}.

If α ≥ ω, then
|Lα+1| ≤ ℵ0 · |L<ωα | = ℵ0 · |Lα|.

Thus |Lα| = |Lα+1|.

Therefore α < ω1, |Lα| = ℵ0 and |Lω1
| = ℵ1.

This means: Vω+1 6= Lω+1 (since the first has size 2ℵ0 , while the second has size ℵ0).

Note: This does not mean V 6= L. (V = L means ∀x,∃α, x ∈ Lα).

V = L is called the “axiom of constructibility”.Lecture 6

There is a finite fragment TL of ZF[!] that proves that all of the operations occuring in the definition
of L, i.e. Fml, X<ω, |=, D,D are well-defined and absolute.

Thus, if M is a transitive model of TL, then

∀α ∈ Ord∩M,Lα ∈M

and thus Lα ⊆M .

So
⋃
α∈Ord∩M Lα ⊆M .
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Axioms of ZF

Structural axioms:

• Extensionality:
∀x,∀y, (∀w(w ∈ x↔ w ∈ y) → x = y).

• Foundation:
∀x(∃v, (v ∈ x) → ∃m, (m ∈ x ∧ ∀w,¬(w ∈ m ∧ w ∈ x))).

• Infinity:

∃i,∃e, (∀v,¬v ∈ e ∧ e ∈ i) ∧ ∀x, (x ∈ i→ ∃s, (s ∈ i ∧ ∀w, (w ∈ s↔ w ∈ x ∨ w = x))).

Functional axioms:

• Pairing:
∀x, ∀y, ∃p,∀w, (w ∈ p↔ w = x ∨ w = y).

• Union:
∀x, ∃v, ∀w, (w ∈ v ↔ ∃z, (z ∈ x ∧ w ∈ z)).

• Powerset:
∀x, ∃p,∀w, (w ∈ p↔ ∀v, (v ∈ w → v ∈ x)).

• Separation ϕ:
∀p,∀x,∃s,∀w, (w ∈ s↔ w ∈ x ∧ ϕ(w, p)).

• Replacement ϕ:

∀p, [∀x, ∀y, ∀z(ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)] → ∀x, ∃r,∀w, (w ∈ r ↔ ∃y, (y ∈ x ∧ ϕ(y, w, p))).

Now we check that these hold in L.

In Lecture 2, we proved Extensionality and Foundation in all transitive structures, so also in L.

Note that ω satisfies the condition of the axiom of infinity, so any M transitive with ω ∈M will satisfy
the axiom of infinity. TODO

Now do pairing and union.

Since the definitions of pairs and unions

z = {x, y}

z =
⋃
x

18



are absolute for transitive models, it’s enough to show that

∀x, y ∈ L,{x, y} ∈ L

∀x ∈ L
⋃
x ∈ L

If x, y ∈ Lα, ϕ(w, x, y) := w = x ∨ w = y,

D(ϕ, (x, y), Lα) = {w ∈ Lα : Lα |= ϕ(w, x, y)}
= {w ∈ Lα : Lα |= w = x ∧ w}TODO

Powerset axiom.

∀x, ∃p, ∀w, (w ∈ p↔ w ⊆ x)︸ ︷︷ ︸
∗

The problem here is that ∗ is not obviously absolute. In particular, z = P(x) is not absolute.

Consider Lω+1: we have ω ∈ Lω+1 and P ∩ Lω+1 is countable.

In Lω+2, we find
{a ∈ Lω+1 : a ⊆ ω}

which is the best possible answer to the question “what is the power set of ω?” that Lω+1 can give,
but unlikely to be the correct answer.

Consider instead P(ω) ∩ L =: P and define

Ω := {ρL(a) : a ∈ P}.

(reminder: ρL(a) is the least α such that a ∈ Lα+1)

By Replacement, Ω is a set of ordinals, so find α > Ω. Then P ⊆ Lα.

Therefore P = {a ∈ Lα : a ⊆ ω} ∈ Lα+1, so P ∈ L.

Separation:

∀p,∀x, ∃s,∀w, (w ∈ s↔ w ∈ x ∧ ϕ(w, p)︸ ︷︷ ︸
ϕ′(w,x,p)

)

If x ∈ Lα, then

D(ϕ′, x, Lα) := {w ∈ Lα : Lα |= ϕ′(w, x, p)}
= {w ∈ Lα : Lα |= w ∈ x ∧ ϕ(w, p)}
?
= {w ∈ L︸︷︷︸

not a problem

: L︸︷︷︸
this is a problem

|= w ∈ x ∧ ϕ(w, p)}
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If ϕ is not absolute between Lα and L, this won’t work.

Levy Reflection Theorem to the rescue: ∀ϕ,∀α, ∃θ > α such that ϕ is absolute between Lθ and L.

Thus: form

D(ϕ′, x, Lθ) = {w ∈ Lθ : Lθ |= w ∈ x ∧ ϕ(w, p)}
absolute

= {w ∈ Lθ : L |= w ∈ x ∧ ϕ(w, p)}

Replacement:

This will be on Example Sheet 2. The proof is a combination of the ideas from power set and separation.

Corollary 2.3 (Minimality). Assuming that:

• T is a transitive model of ZF

Then for all α ∈ T ∩Ord, Lα ⊆ T . Axiom of TODO.

Remark. Remark on the Axiom of Choice.
Gödel (1938): Con(ZF) → Con(ZFC).
Note first that everything we did so far only needed ZF in the universe. We will sketch that
L |= AC. In fact a strong version of AC known as GLOBAL CHOICE: there is an absolutely
definable bijective operation between L and Ord.
Sketch: Recursive construction of bijections πα : Lα → ηα for some ordinal ηα, and such that
for β < α we have πα|Lβ

= πβ .
If λ is a limit and πα is defined for α < λ, then let

πλ(x) := πα(x)

if x ∈ Lα.
Suppose α = β + 1 and πβ is given by πβ : Lβ → ηβ .
Consider Fml×L<ωβ . Well-order it in order type η′β via the induced πβ well-order. Then if
x ∈ Lα, say

πα(x) :=

®
πβ(x) if x ∈ Lβ

ηβξ if ξ is the ordinal corresponding to the least (ϕ, p) such that x = D(ϕ, p, TODO)

Lecture 7
TODOLecture 8

Cohen:

∀T ⊆ ZFC finite, ∃T ∗ ⊆ ZFC finite such that if M is a countable transitive model of T ∗, then there is
N ⊇M countable transitive model of T + ¬CH. (∗)

We have seen (Example Sheet 1) that (∗) implies Con(ZFC) =⇒ Con(ZFC + ¬CH).

20
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Simplified: If M is a countable transitive model of ZFC, then there is N ⊇ M countable transitive
model of ZFCh = ¬CH.

Idea: If M is a countable transitive model of ZFC: α := ωM1 ; β := ωM2 ; f : β → P(ω) injection. Force
N such that f ∈ N and M ⊆ N .

Observe that there is a countable transitive model N such that f ∈ N and M ⊆ N . M ∪ tcl({f})
is transitive and countable. Thus LSM gives N transitive countable with M ∪ tcl({f}) ⊆ N . Know
N |= ∃g : β → P(ω) is an injection, but no clue what ℵ1 and ℵ2 in N are.

How do we control what we add?
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3 Forcing

Definition (Forcing). (P,≤,1) is called a forcing poset or forcing if it is a partial order and
1 ∈ P and 1 is the largest element. Elements of P are called condition.

p ≤ q is interpreted as

“p is stronger than q”
“q is weaker than p”

Note. Unconventional.

Alternative: “Jerusalem convention”. Interpret p ≤ q as “q is stronger than p”.

We are not following the Jerusalem convention.

Definition (Compatible). p and q are compatible if there is r ≤ p, q. Otherwise, we say they
are incompatible (which we write as p ⊥ q).

Definition (Antichain). A ⊆ P is an antichain if any two distinct elements of A are incompat-
ible.

Definition (Dense). D ⊆ P is dense if ∀p ∈ TODO.

Definition (Filter). F ⊆ P is called a filter if

(a) ∀p, q ∈ F, ∃r ∈ F, r ≤ p, q

(b) ∀p ∈ F, ∀q ∈ P, q ≥ p =⇒ q ∈ F

If F only has property (a), we call it a filter base, and then

{p ∈ P : ∃q ∈ F, q ≤ p}

is the filter generated from F .

Note. Filters cannot contain incompatible elements.

Definition (D-generic). If D is a family of dense sets, then F is called D-generic if F is a filter
and ∀D ∈ D, D ∩ F 6= ∅.
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Theorem 3.1. Assuming that:

• D is countable

Then there is a D-generic filter.

Proof. Let D = {Dn : n ∈ N}. Pick p0 ∈ D0 arbitrarily and define by recursion pi+1 by picking some
q ≤ pi with q ∈ Di+1.

Then {pi : i ∈ N} is a filter base, so let F be the filter generated by it. Then it is D-generic by
construction.

Main example

Fix any sets X and Y

Fn(X,Y ) := {p : p is a finite fucntion with dom(p) ⊆ X and range(p) ⊆ Y }.

Define p ≤ q ⇐⇒ p ⊇ q and 1 := ∅.

What does p ⊥ q mean?

p ⊥ q ⇐⇒ ∃x ∈ X,x ∈ dom(p) ∩ dom(q) ∧ p(x) 6= q(x).

Lemma 3.2. Assuming that:

• F ⊆ P is a filter

Then
⋃
F is a function.

Lemma 3.3. Dx := {p ∈ P : x ∈ dom(p)} is a dense set. If D := {Dx : x ∈ X}, and F is
D-generic, then dom(

⋃
F ) = X.

Proof. If x ∈ X, find p ∈ F ∩Dx, then x ∈ dom(p), TODO

3.1 Cohen Forcing

Example 1

C := Fn(ω, 2).

If F is D-generic, then
⋃
F : ω → 2 (by above).
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Lemma 3.4. Assuming that:

• Fix f : ω → 2 and define

Nf := {p ∈ P : ∃u, p(u) 6= f(u)}.

• F is D ∪ {Nf}

Then
⋃
F 6= f .

Corollary 3.5. There is no F that is D ∪ {Nf | f : ω → 2}-generic.

However: if M is a countable transitive model and you consider

Nf := {Nf : f ∈M},

then by Theorem 3.1, there is a D ∪NM -generic. And for this F , TODO

Example 2

Fn(X,Y ) =: P as before.

Ry := {p ∈ P : y ∈ range(p)}
R := {Ry : y ∈ Y }

Lemma 3.6. Assuming that:

• F is D ∪R-generic

Then
⋃
F : X → Y is a surjection.

Corollary 3.7. Assuming that:

• |Y | > |X|

Then there is no D ∪R-generic.

However: if M is a countable transitive model and, e.g. TODO

Example 3

Fn(X × Y, 2). Assume X is infinite. Consider

Ey,y′ := {p ∈ P : ∃x ∈ X, p(x, y) 6= p(x, y′)}.

24



This is dense for y 6= y′.
E := {Ey,y′ : y 6= y′ ∈ Y }.

Lemma 3.8. Assuming that:

• F is D ∪ E-generic

Then there is an injection from Y into P(X).

Proof. Fix y and define
Ay := {x ∈ X : (

⋃
F )(x, y) = 1}.

Ey,y′ guarantees that y 7→ Ay is an injection.

Corollary 3.9. Assuming that:

• |Y | > |P(ω)|

Then there is no D ∪ E-generic.

However: if M is a countable transitive model of ZFC + CH, α is countable and so a D ∪ E-generic
exists.Lecture 9

Recap: M a countable transitive model of ZFC (or a sufficiently large finite fragment).

P ∈M : dense / filter / D-generic.

Example. Fn(ω, 2) produces a new function f : ω → 2. Cohen forcing.

Example. Fn(X,Y ) produces a surjection f : X → Y . Fn(ω, Y ) COLAPSE of Y .

Example. Fn(X × Y, 2) produces an injection f : Y → P(X).

If M is a countable transitive model of ZFC, then DM := {D ⊆ P dense : D ∈M} is countable, so by
Theorem, we have a DM -generic.

Definition 3.10 (P -generic over M). We say F is P-generic over M if it is DM -generic. These
always exist if M is a countable transitive model.

GOAL: Build an extension M [G] such that M ⊆ M [G], M [G] a countable transitive model of ZFC,
G ∈M [G] and M [G] is minimal.
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Names

Idea: Think of elements of P as “truth values” for the von Neumann construction.

NameP0 := ∅
NamePα+1 := {τ : τ ⊆ Nameα×P}

NamePλ :=
⋃
α<λ

NamePα

Then
NameP :=

⋃
α∈Ord

NamePα

is the proper class of all names.

Consider: P = {0, 1}. Then NameP ∼= V .

Since this is a recursive definition using absolute concepts, being a name is absolute for transitive
models:

{τ :M |= τ is a P-name} = NameP ∩M.

TODO

Examples

∅ ∈ NameP1,
τp := {(∅, p)} ∈ NameP2

“The name for a set that contains ∅ with value p.”

τpq := {(τp, q)}.

“The name for whatever τp describes with value q”.

Interpretation

If F ⊆ P, we interpret a P-name as follows:

val(τ, F ) := {val(σ, F ) : ∃p ∈ F, (σ, p) ∈ τ}.

Important: This is a recursive definition.

Thus: the valuation is absolute for transitive models containing τ and F .
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Example.

(1) ∅: clearly val(∅, F ) = ∅.

(2) τp:

val(τp, F ) :=

®
{∅} p ∈ F

∅ p /∈ F

(3) τpq:

val(τpq, F ) :=


∅ q /∈ F

{{∅}} q ∈ F ∧ p ∈ F

{∅} q ∈ F ∧ p /∈ F

The relationship between p and q affects these possibilities.
Example: if q ≤ p and F is a filter, then {∅} is impossible.
Example: if q = 1 and F is a non-empty filter, then ∅ is impossible.
Example: if p ⊥ q and F is a filter, then {{∅}} is impossible.

Definition 3.11 (Generic extension). The (generic) extension for any countable transitive
model M and any F ⊆ P where P ∈M is

M [F ] := {val(τ, F ) : τ ∈ NameP ∩M}.

Obviously, M [F ] is a countable set with ∅ ∈M [F ] (Example (1)).

Also, by definition, M [F ] is transitive.

Note:
M [F ] |= Extensionality + Foundation.

Need to show

(1) M ⊆M [F ].

(2) F ∈M [F ].

(3) M [F ] |= ZFC.

(4) M [F ] is minimal.
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Canonical Names

Definition 3.12 (Canonical name). Let x ∈M . Define by recursion the canonical name for x
by

w̌ := {(y̌,1) : y ∈ x}.

Lemma 3.13. val(x̌, F ) = x if 1 ∈ F .

Proof. Induction.

Corollary 3.14. M ⊆M [F ] if 1 ∈ F .

Alternative construction of canonical names without 1 is on Example Sheet 2.

Γ := {(p̌, p) : p ∈ P}.

Lemma 3.15. val(Γ, F ) = F .

Proof. Calculate:

val(Γ, F ) = {val(p̌, F ) : p ∈ F}
= {p : p ∈ F} (by previous lemma)
= F

Corollary 3.16. F ∈M [F ].

Remark. If N is a countable transitive model with M ⊆ N and F ∈ N , then M [F ] ⊆ N . (by
absoluteness of val(τ, F )).

Warm-up: Suppose σ, τ ∈ NameP. Define

up(σ, τ) := {(σ,1), (τ,1)}.

Pairing: Then
val(up(σ, τ), F )) = {val(σ, F ), val(τ, F )}.

(“up” stands for unordered pair).
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Corollary 3.17. M [F ] |= Pairing (if 1 ∈ F ).

Union: If τ is a name, define

uτ := {(σ′, r) : ∃σ, p, q, s.t.(σ, p) ∈ τ, (σ′, q) ∈ σ, r ≤ p, q}.

Claim: val(uτ , F ) =
⋃
val(τ, F ) if F is a filter.

Proof. Suppose z ∈ val(uτ , F ).

So z = val(σ′, F ) for some (σ′, r) ∈ uτ with r ∈ F .

So ∃σ, p, q with (σ, p) ∈ τ , (σ′, q) ∈ σ, r ≤ p, q.

So p, q ∈ F . Hence val(σ, F ) ∈ val(τ, F ), z = val(σ′, F ) ∈ val(σ, F ).

So z ∈
⋃
val(τ, F ).

Conversely, suppose z ∈
⋃
val(τ, F ). Then ∃y, z ∈ y ∈ val(τ, F ) (z → (σ′, q) ∈ σ with q ∈ F ,

y → (σ, ρ) ∈ τ with p ∈ F ).

Hence since F a filter, find r ≤ p, q with r ∈ F .

Then (σ′, r) ∈ uτ , so z ∈ val(uτ , F ).

Lecture 10
TODO

Further Recap

We proved
M [G] |= Extensionality + Foundation + Pairing + Union.

Homework was: Think about why power set is not easy.

“Union” proof was:

collect all natural candidates of names for elements and assign the natural values.

Problem: If you try to do this for power set, neither the “natural candidates for names” nor the
“natural values” are obvious. It’ll turn out that they are obvious in the end, but that requires some
assistance.

Note: Separation and Replacement are even worse.

One remaining easy axiom: AC. By well-ordering theorem, AC holds if and only if ∀x, ∃α, ∃i, i : x→ α
injection. If x ∈M [F ], then there is σ ∈ Name such that x = val(σ, F ).
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Notation. I write dom(σ) := {τ : ∃p, (τ, p) ∈ σ}.

Consider dom(σ). In M , I have i : dom(σ) → α for some ordinal α. In M [F ], define

y 7→ min{i(τ) : val(τ, F ) = y, τ ∈ dom(σ)}.

Call this i∗. Then i∗ : x→ α is an injection. So, AC holds in M [F ].

Forcing

Definition (Forcing language). Fix M a countable transitive model of ZFC, P ∈ M a forcing
poset.
We call the language

Lforcing := L∈ ∪ {τ : P-names}

the forcing language (over M).

Definition (Interpretation of forcing language). If G is a P-generic over M and ϕ is in the
forcing language, we say

M [G] |= ϕ

if and only if
M [G], v |= ϕ

where v(τ) := val(τ,G).

Definition (Semantic forcing predicate). p M,P ϕ: Forall G P-generic over M with p ∈ G,
M [G] |= ϕ.
“p forces ϕ”
We often omit M,P.

Two theorems at the heart of forcing:

(1) Forcing Theorem: If G is a P-generic over M , then

M [G] |= ϕ ⇐⇒ ∃p ∈ G, p  ϕ.

(2) Definability Theorem: “p  ϕ” is absolutely definable for transitive models containing M .

We are going to do the following:

(a) Define the syntactic forcing predicate ∗ that is absolutely definable.
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(b) Prove the Forcing Theorem for ∗.

(c) Derive that  ⇐⇒ ∗.

Lectures 11 and 12.

Observations (under the assumption of the Forcing Theorem):

(1) If q ≤ p and p  ϕ, then q  ϕ.

(2) If p  ∃x, ϕ, then there is a name τ and q ≤ p such that q  ϕ(τ).
[if p  ∃x, ϕ(x) and p ∈ G, then by definition M [G] |= ∃x, ϕ(x), so there is a name τ such that
M [G] |= ϕ(τ). By Forcing Theorem, find r ∈ G such that r  ϕ(τ). Find q ≤ p, r, q ∈ G. By (1),
q  ϕ(τ). ]

Proof of Separation in M [G]. Let ϕ(x, x1, . . . , xn) be an L∈-formula (not in the forcing language) and
x ∈M [G]. Need a name for

A := {z ∈ x :M [G] |= ϕ(z, p)}.

[For readability, we now drop parameters p].

Fix σ such that val(σ,G) = x. Define

% := {(π, p) : π ∈ dom(σ) ∧ p  π ∈ σ ∧ ϕ(π)}.

By the Definability Theorem, % is a name in M .

Claim: val(%,G) = A.

“⊆” If z ∈ val(%,G), then there is (π, p) ∈ % such that z = val(π,G), p ∈ G. Since (π, p) ∈ %, we get
π ∈ dom(σ), p  π ∈ σ ∧ ϕ(π). Together with p ∈ G, we get

M [G] |= π ∈ σ ∧ ϕ(π)︸ ︷︷ ︸
z∈x∧ϕ(z)

.

Hence z ∈ A.

“⊇” If z ∈ A, then z ∈ x and M [G] |= ϕ(z). So there is π ∈ dom(σ), z = val(π,G).
By the Forcing THeorem, ∃p ∈ G, p  ϕ(π). Also, there is q ∈ G and q  π ∈ σ. Find r ∈ G,
r ≤ p, q such that r  π ∈ r ∧ ϕ(π).
Hence (π, r) ∈ %, so z = val(π,G) ∈ val(%,G).

Lecture 11

Proof of power set. Example Sheet 3.
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Proof of Replacement. Since we already have Separation, it’s enough to show the following:

if ϕ is a functional formula and x ∈M [G], then there is R ∈M [G] such that

M [G] |= ∀y ∈ x, ∃z ∈ R,ϕ(y, z, ��p) (∗)

(as before, we suppress parameters for notational ease).

We work in M and identify a name ρ for R. Fix σ such that x = val(σ,G). Find α large enough such
that dom(σ) ⊆ Vα. Consider ψ(p, π) := ∃µ, p  ϕ(π, µ) (p ∈ P, π a name). By Definability Theorem,
this is an L∈ formula.

By Levy Reflection Theorem, find θ > α such that ψ is absolute between Vθ and V =M . Define

ρ := {(µ,1) : µ ∈ Vθ}

and R := val(ρ,G).

Now we verify (∗) holds: Fix y ∈ x, y = val(π,G). Since ϕ is functional, we know that ϕ(π, µ) holds
in M [G] for some µ. By Forcing Theorem, there is p ∈ G such that p  ϕ(π, µ). So M |= ψ(p, π).

By absoluteness, Vθ |= ψ(p, π). This means ∃µ ∈ Vθ such that p  ϕ(π, µ).

Thus: val(µ,G) ∈ val(ρ,G) = R.

Definition (Dense below p). D ⊆ P is called dense below p if ∀q ≤ p,∃r ≤ q, r ∈ D.

Lemma 3.18. Assuming that:

• G is P-generic over M

• E ⊆ P

• E ∈M

Then

(i) If E is dense below p, q ≤ p, then E is dense below q.

(ii) If {r : E is dense below r} is dense below p, then E is dense below p

(iii) Either G ∩ E 6= ∅ or ∃q ∈ G, ∀r ∈ E, r ⊥ q.

(iv) If p ∈ G, E is dense below p, then G ∩ E 6= ∅.

Proof. Example Sheet 3
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Definition of the syntactic forcing relation

p  ∗ϕ(τ).

Two recursions:

First “ ∗ =” by recursion on Nameα.

Then “ ∗ ∈” without recursion.

Then the rest by recursion on formula complexity.

p  ∗τ0 = τ1: if and only if

∀(π0, s0) ∈ τ0

{q ≤ p : q ≤ s0 → ∃(π1, s1) ∈ τ1, (q ≤ s1 ∧ q  ∗π0 = π1)}
is dense below p

and

∀(π1, s1) ∈ τ1

{q ≤ p : q ≤ s1 → ∃(π0, s0) ∈ τ0, (q ≤ s0 ∧ q  ∗π0 = π1)}
is dense below p

Remark. This is a recursion on Nameα.

p  ∗τ0 ∈ τ1: if and only if

{q ≤ p : ∃(π, s) ∈ τ1, (q ≤ s ∧ q  ∗π = τ0)}

is dense below p.

Remark. No recursion involved, just “ ∗ =”.

Recursion on complexity of formulas:

• p  ∗ϕ ∧ ψ: if and only if p  ∗ϕ and p  ∗ψ.

• p  ∗¬ϕ: if and only if ∀q ≤ p, q 6 ∗ϕ.

• p  ∗∃x, ϕ(x): if and only if {r : ∃σ, r  ∗ϕ(σ)}.

Remark. These definitions remind us of Kripke semantics for intuitionistic logic.
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Lemma 3.19. The following are equivalent:

(i) p  ∗ϕ.

(ii) ∀r ≤ p, r  ∗ϕ.

(iii) {r : r  ∗ϕ} is dense below ρ.

Proof. If this is true for ϕ of the form τ0 = τ1 and of the form τ0 ∈ τ1, then it’s true for all formulas.

For ϕ atomic, we get that (ii) =⇒ (i) and (ii) =⇒ (iii) are trivial.

(i) =⇒ (ii) follows from Lemma 3.18(i).

(iii) =⇒ (i) follows from Lemma 3.18(ii).

Strategy:

Theorem 3.20 (Syntactic Forcing Theorem). M [G] |= ϕ if and only if ∃p ∈ G,M |= r  ∗ϕ.

Corollary 3.21 (Definability Theorem). p  ϕ if and only if p  ∗ϕ.

(p  Mϕ ⇐⇒ M |= p  ∗ϕ)

Corollary 3.22 (Forcing Theorem). M [G] |= ϕ if and only if ∃p ∈ G, p  ϕ.

This corollary is immediate from combining the two previously stated results.

Proof of Definability Theorem from Syntactic Forcing Theorem.

⇐ This is just Syntactic Forcing Theorem.

⇒ Suppose p  ϕ. By Lemma 3.18, we need to show

{r ≤ p : r  ∗ϕ}

is dense below p.
Suppose not. Then I find q ≤ p such that ∀r ≤ q, r 6 ∗ϕ. So q  ∗¬ϕ.
If q ∈ G, then p ∈ G. Since p  ϕ, M [G] |= ϕ. Since q  ∗¬ϕ, M [G] |= ¬ϕ. Contradiction!

Proof of the Syntactic Forcing Theorem. The Theorem for = can be proved by induction on Nameα.

The Theorem for ∈ can be proved once the Theorem has been established for =.
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Rest is induction on formula complexity.

Let’s do ¬ and leave the rest to Example Sheet 3. Assume we have proved it for ϕ. We will prove it
for ¬ϕ.

⇒ M [G]  ¬ϕ. Consider
D := {p : p  ∗ϕ or p  ∗¬ϕ}.

By definition of  ∗¬, this is dense. Find p ∈ G ∩D.
By assumption, p 6 ∗ϕ, so p  ∗¬ϕ.

⇐ Let p ∈ G such that p  ∗¬ϕ. By definition, ∀q ≤ p, q 6 ∗ϕ. If M [G] 6|= ¬ϕ, thus M [G] |= ϕ. By
induction hypothesis, find r ∈ G, r  ∗ϕ. So q ≤ r, p, q ∈ G.
By Lemma, q  ∗ϕ, contradiction to ∀q ≤ p, q 6 ∗ϕ.

Lecture 12

Note. The Forcing Theorem is very useful! The inner details of the proof are not very important
though. We won’t really discuss these details once we have proved the theorem.

Continuing the proof of Syntactic Forcing Theorem. Assume Syntactic Forcing Theorem for “=” and
prove if for “∈”.

Want to show:

p  ∗τ0 ∈ τ1 if and only if
{q : ∃(π, s) ∈ τ1, (q ≤ s ∧ q  ∗π = τ0)}

is dense below p.

Proof.

⇒ Assume that M [G] |= τ0 ∈ τ1, i.e. val(τ0, G) ∈ val(τ1, G). Thus, there is (π, s) ∈ τ1 such that
val(π,G) = val(τ0, G) ( ⇐⇒ M [G] |= π = τ0) and s ∈ G. So by Syntactic Forcing Theorem for =,
find r ∈ G such that r  ∗π = τ0.
Find p ≤ r, s such that p ∈ G.
Claim that D is dense below p. Let q ∈ D and pick the above (π, s). Then we have q ≤ p ≤ s and
q  ∗π = τ0 (since q ≤ p ≤ r).

⇐ Assume p ∈ G, p  ∗τ0 ∈ τ1, i.e. D is dense below p. By Lemma 3.18(iv), find q ∈ G ∩ D, thus
there is (π, s) ∈ τ1 such that q ≤ s, q  ∗π = τ0. Since q ∈ G, s ∈ G, we have val(π,G) ∈ val(τ1, G).
By Syntactic Forcing Theorem for “=”, we have val(π,G) = val(τ0, G). So val(τ0, G) ∈ val(τ1, G).
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Now we prove it for “=”.

We prove this by induction on name rank, so assume that Syntactic Forcing Theorem for “=” is true
for names π0, π1 with smaller name rank.

Reminder: we need to show M [G] |= τ0 = τ1 if and only if ∃p ∈ G, p  ∗τ0 = τ1.

TODO: double check the below

Proof.

⇐ Assume p ∈ G such that p  ∗τ0 = τ1. Need to prove val(τ0, G) = val(τ1, G).
We’ll show that the fact that D0 is dense below p implies val(τ0, G) ⊆ val(τ1, G). The other
direction is the same proof but with 0 and 1 flipped.
Proof of this: Let x ∈ val(τ0, G), so find (π0, s0) ∈ τ0 such that s0 ∈ G and x = val(π0, G). So, the
corresponding D0 is dense below p. Find q ≤ s0, p such that q ∈ G. Then D0 is dense below q. So
find r ≤ q such that r ∈ G ∩D0. (Note that r ≤ q ≤ s0, so r ≤ s0).
Since r ∈ D0 and r ≤ s0, find (π1, s1) ∈ τ1 such that r ≤ s1 ∧ r  ∗π0 = π1. By induction
hypothesis, r ∈ G and r  ∗π0 = π1, which implies x = val(π,v) = val(π1, G) (since (π1, s1) ∈ τ1
and s1 ∈ G).

⇒ Assume val(τ0, G) = val(τ1, G). Consider the set

D := {r : r  ∗τ0 = τ1 or
Φ0
r ∃(π0, s0) ∈ τ0(r ≤ s0 ∧ ∀(π1, s1) ∈ τ1,∀q((q ≤ s1 ∧ q  ∗π0 = π1) → q ⊥ r)

Φ1
r ∃(π1, s1) ∈ τ1(r ≤ s1 ∧ ∀(π0, s0) ∈ τ0,∀q((q ≤ s0 ∧ q  ∗π0 = π1) → q ⊥ r)

}

Claim: D is dense. If p  ∗, then p ∈ D, so nothing to show. If p 6 ∗τ0 = τ1, then there is some
D0/D1 that fails to be dense below p.
We’ll show: if D0 is not dense below p, then we can find r ≤ p such that Φ0

r holds.
(Other proof: D1 not dense below p → Φ1

r is flipping 0 and 1).
Suppose p 6 ∗τ0 = τ1 and there is (π0, s0) ∈ τ0 such that D0 is not dense below p. This means:
there is r ≤ p such that

∀q ≤ r(q ≤ s0 ∧ ∀(π1, s1) ∈ τ1¬(q ≤ s1 ∧ q  ∗π0 = π1).

So, we get
r ≤ s0 ∧ ∀(π1, s1) ∈ τ1

for any q that satisfies q ≤ s1 ∧ q  ∗π0 = π1. It can’t be compatible with r (finishes the proof of
the claim that D is dense).
Summary: We now have that D is dense.

D = {r : r  ∗τ0 = τ1 or Φ0
r or Φr1}.
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Claim 2: If r ∈ G, then neither Φ0
r nor Φ1

r holds (again, just do Φ0
r and then flip 0 and 1 for Φ1

r).
If Φ0

r holds, then find (π0, s0) ∈ τ0 such that r ≤ s0 and the incompatibility statement holds.
r ∈ G→ s0 ∈ G, so val(π0, G) ∈ val(τ0, G). If (π1, s1) ∈ τ1 such that TODO
Put everything together: since D is dense by Claim 1, find r ∈ D ∩G. Therefore, by Claim 2, Φ0

r,
Φ1
r do not hold.

Thus r  ∗τ0 = τ1.

Lecture 13
Summary: If G is Fn(ω × ℵM2 , 2)-generic, then M [G] |= ZFC+there is an injection from ℵM2 into
P(ω).

This implies M [G] |= ZFC + 2ℵ0 ≥ ℵ2 if we have ℵM1 = ℵM [G], ℵM2 = ℵM [G]
2 . This is the goal for

today’s lecture.

Note that our proof above is not good enough for the statement (∗) from Lecture 8:

For all T ⊆ ZFC finite, there exists T ∗ ⊆ ZFC finite such that if M is a countable transitive
model of T ∗, then there is N ⊇M countable transitive model of T ∗ + ¬CH.

For this, we need to look more carefully at the proof of the GMT:

M |= ZFC =⇒ M [G] |= ZFC.

The proof proceeds AXIOM BY AXIOM and thus for each ϕ ∈ ZFC, we find finite Sϕ such that
M |= Sϕ implies M [G] |= ϕ.

Let S ⊆ ZFC finite such that S proves that all relevant notions (name, value, …) are well-defined and
absolute. Then for T ⊆ ZFC finite, define

T ∗ := S ∪
⋃
ϕ∈T

Sϕ.

Then, the proof shows (∗).

Let’s prove ¬CH in M [G].

Definition (Preserves cardinals). We say P preserves cardinals if ∀G P-generic over M , “κ is
a cardinal” is absolute between M and M [G].

Definition 3.23 (Countable chain condition). We say P has the countable chain condition
(c.c.c.) if every antichain (note the anti!) in P is countable.
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Theorem 3.24. Assuming that:

• P has countable chain condition

Then P preserves cardinals.

Theorem 3.25. Fn(ω × ℵM2 , 2) has the countable chain condition.

Corollary 3.26. Assuming: - G is Fn(ω × ℵM2 , 2)-generic over M , then

M [G] |= ZFC + 2ℵ0 ≥ ℵ2.

Lemma 3.27. Assuming that:

• M |= P has countable chain condition

• X,Y ∈M

• G is P-generic over M

• f : X → Y , f ∈M [G]

Then there is F ∈ M such that ∀x ∈ X,F (x) ⊆ Y , ∀x ∈ X, f(x) ∈ F (x) and M |= ∀x ∈
X,F (x) is countable.

Proof of Theorem 3.24. Suppose M |= κis a cardinal, M [G] |= κ is not a cardinal, so there is λ < κ
and f ∈M [G], f : λ→ κ, f is a surjection. Apply the lemma to get F .

Define R :=
⋃
α<λ F (α).

Since ∀x, f(x) ∈ F (x), R = κ.

But M |= |R| = ℵ0 · λ = λ < κ. But then M thinks that κ is not a cardinal, contradiction.

Now we prove the lemma:

Proof. Let F (x) := {y ∈ Y : ∃p ∈ P, p  τ(x̌) = y̌}.

Fix τ a name for f .

By Definability Theorem , F ∈M .

Then ∀x ∈ X,F (x) ⊆ Y follows from definition.

∀x ∈ X, f(x) ∈ F (x) follows from Forcing Theorem.
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Let’s look at M |= F (x) is countable: If y ∈ F (x), let py be such that py  τ(x̌) = y̌.

If y 6= y′, then py ⊥ py′ . Thus
{py : y ∈ F (x)}

is an antichain.

By countable chain condition, it’s countalbe. So F (x) was countable.

TODO

Proof of Theorem 3.25. Actually, we prove Fn(X,Y ) has countable chain condition whenever Y is
countable.

∆-systems form Example Sheet 3 Q33 are also called quasi-disjoint families.

(A family of finite sets D is called a ∆-system if there is a finite set R (called the root of the ∆-system)
such that for all D,D′ ∈ D, if D 6= D′ then D ∩D′ = R).

∆-system lemma: Any countable family of finite sets contains an uncountable ∆-system.

Take any A ⊆ P uncountable and prove that it’s not an antichain.

If p ∈ A, then dom(p) ⊆ X finite. Consider

S := {dom(p) : p ∈ A}.

That’s an uncountable family of finite sets, so by ∆-system lemma, find ∆-system D ⊆ S uncountable.

Let r ⊆ X finite be the root of D.

Since Y is countable, there are only countably many functions q : r → Y . Since D is uncountable, by
pigeonhole principle, there are p, q such that dom(p),dom(q) ∈ D and p|r = q|r. But since dom(p) ∩
dom(q) = r, p and q are compatible.

So A is not an antichain.

We got M [G] |= 2ℵ0 ≥ ℵ2.

Next time: What is the size of 2ℵ0 in M [G]?

Remember: LST Example Sheet 4: ZFC ` 2ℵ0 6= ℵω.

What if ℵ2 was one of the forbidden values?

Remark. Obtaining M [G] |= 2ℵ0 = ℵ2 cannot be quite as general as this proof: if M |= 2ℵ0 >
ℵ2, then this will remain true in M [G].
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Remark. If G is Fn(ω × ℵMα , 2)-generic over M , then

M [G] |= 2ℵ0 ≥ ℵα.
Lecture 14

Previous lecture: Suppose M a countable transitive model of ZFC.

TODO

Question: (∗) What are the possible values for 2ℵ0?

Mentioned last lecture: not all values are possible. In particular, 2ℵ0 6= ℵω.

Definition (Cofinal). C ⊆ κ is cofinal (= unbounded) if ∀λ < κ, ∃γ ∈ C, γ ≥ λ. We can then
define:

cf κ := {|C| : C is cofinal}.

Example 3.28. cf ℵ1 = ℵ1, cf ℵω = ℵ0.

Lemma 3.29 (Kőnig’s Lemma). κcf κ > κ.

Then LST Example Sheet 4 Q10 is the special case κ = ℵω, cf κ = ℵ0 of Kőnig’s Lemma.

Consequence for 2cf κ: (2cf κ)cf κ = 2cf κ, thus 2cf κ 6= κ.

Preview of answer to (∗): Every value not prohibited by Kőnig’s Lemma is possible.

Now: ℵ2!

Definition. If P is any forcing, let

OL := {An : n ∈ ω}

be any ω-sequence of antichains in P.
Let

τOL := {(ň, p) : p ∈ An}.

We call these nice names.

If |P| = κ and P has countable chain condition, then there are at most κℵ0 many antichains and thus
at most (κℵ0)ℵ0 = κℵ0·ℵ0 = κℵ0 many ω-sequences of antichains and thus nice names.

Theorem 3.30. Assuming that:

• M [G] |= x ⊆ ω
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Then there is a nice name τ such that val(τ,G) = x.

Note. The Theorem does not need any assumptions about P.

Proof. Start with M such that val(µ,G) = x (possibly not nice). Fix n ∈ ω. Fix either a well-ordering
of P (possibly using AC to get one) and build a maximal antichain An such that ∀p ∈ An, p  ň ∈ µ.

TODO.

Claim: val(µ,G) = val(τOL, G).

⊇: If n ∈ val(τOL, G), then there is p ∈ G such that (ň, p) ∈ τOL, and then p ∈ An, so p  ň ∈ µ. So
n ∈ val(µ,G).

⊆: If n ∈ val(µ,G), then by Forcing Theorem, get q ∈ G such that q  ň ∈ µ.

Subclaim: An ∩ G 6= ∅. Indeed, by our lemma on compatibility (Example Sheet 3), get q′ ∈ G such
that q′ ⊥ p for all p ∈ An. Find r ≤ q, q′. Then r  ň ∈ µ. But that is in contradiction to An being
maximal.

So find p ∈ G ∩An. By definition, (ň, p) ∈ τOL and p ∈ G. So n ∈ val(τOL, G).

Corollary 3.31. Assuming that:

• P has countable chain condition

• M |= |P| = κ ∧ λ = κℵ0

Then M [G] |= 2ℵ0 ≤ λ.

Proof. Follows directly from:

(a) Theorem.

(b) Calculation of the number of nice names.

Main Application

If P = Fn(ω × ℵM2 , 2), then |P| = ℵM2 .
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Calculate in M , ℵℵ0
2 .

Hausdorff’s Formula:
ℵℵβ

α+1 = ℵα+1 · ℵ
ℵβ
α .

So in particular:

ℵℵ0
1 = ℵ1 · ℵℵ0

0

= 2ℵ0

ℵℵ0
2 = ℵ2 · ℵℵ0

1

= ℵ2 · 2

So ℵℵ0
2 = max(ℵ2, 2

ℵ0).

By this calculation, if M |= 2ℵ0 ≤ ℵ2, then M [G] |= 2ℵ0 ≤ ℵ2.

Corollary 3.32. If M |= CH, then M [G] |= 2ℵ0 = ℵ2.

Remark. This proof also shows that if

M |= 2ℵ0 ≤ ℵn

and G is P-generic over M where P = Fn(ω × ℵM2 , 2), then

M [G] |= 2ℵ0 ≤ ℵn.

Corollary: If M |= CH, then M [G] |= 2ℵ0 = ℵn.

Remark. What happens at ℵω?

P := Fn(ω × ℵMω , 2).

By general theory, M [G] |= 2ℵ0 ≥ ℵω, but Kőnig’s Lemma gives 2ℵ0 ≥ ℵω+1.
What about the lower bound?
Our theorem and counting of nice names yields

M [G] |= 2ℵ0 ≤ ℵℵ0
ω︸︷︷︸

>ℵω

.

If M |= GCH, then
ℵℵ0
ω ≤ ℵℵω

ω = ℵω+1.

So by Kőnig’s Lemma, ℵℵ0
ω = ℵω+1.

Therefore, if M |= GCH, then M [G] |= 2ℵ0 = ℵω+1.

TODO
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First limit cardinal that is a possible value of 2ℵ0 is ℵω1 .

Clearly, P = Fn(ω × ℵMω1
, 2) adds injection from ℵMω1

into P(ω). So M [G] |= 2ℵ0 ≥ ℵω1
.

Count nice names: |P|ℵ0 = ℵℵ0
ω1

.

If for all α < ω1, ℵℵ0
α ≤ ℵω1

(∗), then ℵℵ0
ω1

= ℵω1
.

ℵℵ0
ω1

= ℵω1

= {f | f : ω → ℵω1}︸ ︷︷ ︸
=:X

=
⋃
α<ω1

{f | f : ω → ℵα}

(since ω1 has no cofinal ω-sequence).

Thus |X| ≤ ℵ1 · ℵω1
= ℵω1

(by assumption (∗)).

Thus M [G] |= 2ℵ0 = ℵω1
.Lecture 15

TODO

What about 2ℵ1?

More on nice names:

Definition (lambda-nice names). Generalise “nice names” to λ-nice names:
Let

OL = {Aα : α < λ}

be a family of λ many maximal P-antichains:

τOL := {(α̌, p) : p ∈ Aα}

for α ∈ λ.
These are names for subsets of λ.

Observe that our theorem “every A ⊆ λ in M [G] has a λ-nice name” still goes through.

If κ is an M -cardinal such that every antichain of P has size ≤ κ. [On Example Sheet 3, this is called
the κ+-chain condition.]

Let µ := |P| (in M). Then
(µκ)λ = µκ·λ

is an upper bound on the number of λ-nice names.

43

https://www.maths.cam.ac.uk/undergrad/examplesheets


Thus
M [G] |= 2λ ≤ (µκ·λ)M .

Question: Forcing with P := Fn(ω × ℵ2, 2) and calculate 2ℵ1 . Assume M |= GCH. Then:

µ = |P| = ℵ2

λ = ℵ1

λ = ℵ0

(since P has countable chain condition). So

M [G] |= 2λ ≤ ℵℵ1·ℵ0
2 = (ℵℵ1

2 )M .

Calculate (ℵℵ1
2 )M :

ℵℵ1
2

Hausdorff’s formula
= ℵ2 · 2ℵ1

GCH
= ℵ2 · ℵ2 = ℵ2.

Together:
M [G] |= 2ℵ1 = ℵ2 = 2ℵ0 .

Question: Is it possible to get PSA, i.e.

∀κ, λ, κ < λ→ 2κ < 2λ

without CH.

In particular, can we get

2ℵ0 = ℵ2

2ℵ1 = ℵ3

First idea: Force with Fn(ℵ1 × ℵ3, 2).

(1) Yields ℵ3 many subsets of ℵ1.

(2) Still has countable chain condition, so all cardinals are preserved.

(3) How many ℵ1-nice names are there:

ℵℵ1·ℵ0
3 = ℵℵ1

3
Hausdorff

= ℵ3 · 2ℵ1
GCH
= ℵ3.

Get: 2ℵ1 = ℵ3 in M [G].

Unfortunately,
M [G] |= 2ℵ0 = ℵ3.

Interpret the generic object G as fα → ℵ1 → 2 for α < ℵ3.

Define gα := fα|ω.
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Claim: For α 6= α′, gα 6= g′α. This is since

Dα,α′ := {p : ∃u ∈ ω, gα(u) 6= gα′(u)}

is still dense.

So, forcing with Fn(ℵ1 × ℵ3, 2) gives the same situation as forcing with Fn(ω × ℵ3, 2) for 2ℵ0 , 2ℵ1 .

Idea:
Fn(X,Y, κ) := {p : dom(p) ⊆ X, range(p) ⊆ Y, |p| ≤ κ}.

Thus Fn(X,Y ) = Fn(X,Y,ℵ0).

Consider
P := Fn(ℵ1 × ℵ3, 2,ℵ1).

Properties:

(1) We still have M [G] |= 2ℵ1 ≥ ℵM3 .

(2) Not clear that this forcing is preserving cardinals!

First goal: What about preserving cardinals?

Clearly, Fn(ℵ1 × ℵ3, 2,ℵ1) does not have the countable chain condition anymore.

With example (38) (on Example Sheet 3), we need to figure out the chain condition of Fn(ℵ1×ℵ3, 2,ℵ1).

We need a ∆-system lemma for this: If λ is regular (cf λ = λ) and OL is a family of sets of size < λ
of size λ+. Then there is a ∆-system D ⊆ OL of size λ+.

This ∆-system lemma gives with the same proof as before:

Fn(ℵ1 × ℵ3, 2,ℵ1) has the ℵM2 -chain condition.

So: Fn(ℵ1 × ℵ3, 2,ℵ1) preserves cardinals ≥ ℵM2 .

Closure

Definition (lambda-closed). A forcing P is called λ-closed if any family {pα : α < γ} for γ < λ
that is a descending chain:

α < β =⇒ pβ < pα

there is q such that q ≤ pα for all α < γ.
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Example. Fn(ℵ1 × ℵ3, 2,ℵ1) is ℵ1-cloesd.
[If {pα} is a descending chain, then

⋃
α<γ pα is a condition in Fn(ℵ1 × ℵ3, 2,ℵ1).]

Theorem 3.33. Assuming that:

• P is λ-closed and κ < λ

Then
P(κ) ∩M = P(κ) ∩M [G].

Corollary 3.34. Forcing with Fn(ℵ1 × ℵ3, 2,ℵ1)

(a) Does not change P(ω).

(b) Therefore preserves ℵ1 (see Example Sheet 1 and the relation between codes for countable
well-orders and preserving ℵ1).

Summary: Forcing with Fn(ℵ1 × ℵ3, 2,ℵ1) over a model of GCH gives M [G] with:

(1) The same cardinals (cardinals ≥ ℵ2 preserved by ℵ2-chain condition; ℵ1 preserved by ℵ1-closure).

(2) 2ℵ1 ≥ ℵ3 (standard).

(3) 2ℵ0 = ℵ1 (by corollary 1 to the closure theorem).

(4) Calculate number of nice names:

ℵℵ1·ℵ1
3 = ℵℵ1

3 = ℵ3 · 2ℵ1 = ℵ3 · ℵ2 = ℵ3.

Hence 2ℵ1 = ℵ3.Lecture 16

Forcing Property Preservation Arithmetic

Fn(ω × ℵ2, 2)
countable chain
condition all cardinals 2ℵ0 = ℵ2, 2ℵ1 =

ℵ2

Fn(ω × ℵ3, 2)
countable chain
condition all cardinals 2ℵ0 = ℵ3, 2ℵ1 =

ℵ3, 2ℵ2 = ℵ3

Fn(ℵ1 × ℵ3, 2,ℵ1)
ℵ1-closed.
If M |= CH, then
ℵ2-chain condition

ℵ1 preserved.
(Closure lemma
[not yet proved])
κ ≥ ℵ2 preserved

If M |= CH, then
2ℵ0 = ℵ1, 2ℵ1 =
ℵ3.

Note GCH → PSA, but our model of ¬CH fails PSA.

Question: Can we have ℵ1 < 2ℵ0 < 2ℵ1?
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Closure lemma:

Theorem. If P is λ-closed and κ < λ, then P(κ) ∩M = P(κ) ∩M [G].

λ-closed: every descending sequence of length < λ has a lower bound.

Proof. Let f ∈M [G], f : κ→ 2 and assume towards contradiction that f /∈M . → f /∈ B.

B := {f ∈M | f :M → 2}.

Let τ be a name for f .

By Forcing Theorem, there is p ∈ G such that p  τ : κ̌→ 2̌ ∧ τ /∈ B̌.

Construct a κ-sequence of conditions pα TODO

TODO

The sequence {pα : α ≤ κ} is defined in M (by Definability Theorem), so we can define

g(α) = 1 : ⇐⇒ pα+1  τ(α̌) = 1̌.

Then g ∈M .

But now pκ  τ(α̌) = 1̌ or pκ  τ(α̌) = 0̌ for all α.

uso pk  τ = ǧ. Hence pκ  τ ∈ B̌.

But pκ ≤ p  τ /∈ B̌. Contradiction.

Note that while Fn(X,Y,ℵ1) is always ℵ1-closed, the chain condition depended on the value of ℵℵ0
1 .

The partial order Fn(ℵ1 × ℵ3, 2,ℵ1) has in general the (2ℵ0)+-chain condition.

CH implies (2ℵ0)+ = ℵ2, so all cardinals are preserved.

However, if 2ℵ0 > ℵ1, then there is a gap and we do not know whether TODO.

If M |= 2ℵ0 = ℵ2, does
Fn(ℵM1 × ℵM3 , 2,ℵM1 )

preserve ℵM2 ?

Answer: Fn(λ+ × κ, 2, λ+) always adds a surjection from λ+ to 2λ ∩M . (∗)

Application: If λ = ℵ2 and M = 2ℵ0 = ℵ2, then Fn(ℵ1 × κ, 2,ℵM1 adds a surjection from ℵM1 onto
P(ℵ0) ∩M , i.e. ℵM2 . So |ℵM2 | = ℵM [G]

1 .
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[Proof of (∗). ] A generic for P “is” a map f : λ+ × κ→ 2.

Define h : λ+ → 2λ by
h(α)(β) = 1 : ⇐⇒ f(α, β) = 1.

Claim: h is a surjection onto 2λ ∩M .

If g ∈M , g : λ→ 2, consider

Dg := {p | ∃α < λ+,∀β < λ, p(α, β) = 1 ⇐⇒ g(β) = 1}.

This is dense, and thus g ∈ range(h).

Back to our question: Can we get ℵ1 < 2ℵ0 < 2ℵ1?

Start with M |= GCH. Consider
P := Fn(ℵ1 × ℵ3, 2,ℵ1) ∩M

and let G be P-generic over M . Consider

Q := Fn(ω × ℵ2, 2) ∩M [G],

and let H be Q-generic over M [G].

Claim: M [G][H] |= ℵ1 < 2ℵ0 < 2ℵ1 .

(M [G][H] is a forcing iteration).

(1) P is cardinal preserving over M since M |= GCH. So ℵMn = ℵM [G]
n .

(2) Q has countable chain condition, so is cardinal preserving: =⇒

ℵM [G][H]
n = ℵM [G]

n = ℵMn .

(3) M [G] |= 2ℵ0 = ℵ1 ∧ 2ℵ1 = ℵ3 (lecture 15; since M |= CH).

(4) Then M [G][H] |= 2ℵ0 = ℵ2 ∧ 2ℵ1 ≥ ℵ3 (using a nice name analysis, we could calculate 2ℵ1 = ℵ3).

This proves the claim.

Important: The order of forcings matters!

Suppose M |= GCH.
Q′ := Fn(ω × ℵ2, 2) ∩M.

H Q′-generic over M .
P′ := Fn(ℵ1 × ℵ3, 2,ℵ1) ∩M [H].

G P′-generic over M [H].
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Consider M [H][G]. Then
M [H] |= 2ℵ0 = ℵ2 = 2ℵ1 .

But that means that forcing with P′ will collapse ℵM2 = ℵM [H]
2 .

Since P′ is ℵ1-closed,
P(ω) ∩M [H] = P(ω) ∩M [H][G].

In particular, M [H][G] |= CH. So, this order does not achieve what we want.

Final Remark on Forcing CH

Assume M |= 2ℵ0 = ℵ2.

Question: Can you obtain M [G] |= CH?

The natural forcing would be
P := Fn(ω,ℵM1 ).

This collapses ℵM1 ; it does not have the countable chain condition, but since it has size ℵM1 , it has the
ℵM2 -chain condition, so all cardinals ≥ ℵM2 are preserved.

Clearly therefore:
M [G] |= |P(ω) ∩M | = ℵM2 = ℵM [G]

1 .

But: is |P(ω) ∩M | = |P(ω) ∩M [G]|?

Nice names: gives upper bound of
(ℵM1 )ℵ

M
1 ·ℵ0 = (2ℵ

M
1 )M .

That’s not surprising, since any A ⊆ ℵ1 in M becomes a new subset of ω in M [G] via the new bijection
between ω and ℵM1 .
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