%! TEX root = EMC.tex % vim: tw=50 % 20/02/2025 09AM \begin{fclemma}[] \label{lemma:5.1} Assuming: - $c > 0$ is such that \[ \h(xy) \ge c(x\h(y) + y\h(x)) \] for every $x, y \in [0, 1]$ - $\mathcal{A}$ is a family of sets such that every element (of $\bigcup \mathcal{A}$) belongs to fewer than $p|\mathcal{A}|$ members of $\mathcal{A}$ Then: $\ent{A \cup B} > c(1 - p)(\ent A + \ent B)$. \end{fclemma} \begin{proof} Think of $A, B$ as characteristic functions. Write $A_{< k}$ for $(A_1, \ldots, A_{k - 1})$ etc. By the \nameref{lemma:1.3} it is enough to prove for every $k$ that \[ \cent{(A \cup B)_k}{(A \cup B)_{ c(1 - p)(\cent{A_k}{A_{ \half$. We shall obtain $\frac{1}{\sqrt{5} - 1}$. We start by proving the diagonal case -- i.e. when $x = y$. \begin{fclemma}[Boppana] \label{lemma:5.2} For every $x \in [0, 1]$, \[ \h(x^2) \ge \phi x \h(x) .\] \end{fclemma} \begin{proof} Write $\psi$ for $\phi^{-1} = \frac{\sqrt{5} - 1}{2}$. Then $\psi^2 = 1 - \psi$, so $\h(\psi^2) = \h(1 - \psi) = \h(\psi)$ and $\phi \psi = 1$, so $\h(\psi^2) = \phi\psi \h(\psi)$. Equality also when $x = 0, 1$. \begin{center} \includegraphics[width=0.6\linewidth]{images/e5dfb88e0fc54db3.png} \end{center} Toolkit: \begin{align*} \ln 2 \h(x) &= -x \ln x - (1 - x) \ln (1 - x) \\ \ln 2 \h'(x) &= -\ln x - 1 + \ln(1 - x) + 1 \\ &= \ln(1 - x) - \ln x \\ \ln 2 \h''(x) &= -\frac{1}{x} - \frac{1}{1 - x} \\ \ln 2 \h'''(x) &= \frac{1}{x^2} - \frac{1}{(1 - x)^2} \end{align*} Let $f(x) = \h(x^2) - \phi x \h(x)$. Then \begin{align*} f'(x) &= 2x\h'(x^2) - \phi \h(x) - \phi x \h'(x) \\ f''(x) &= 2\h'(x^2) + 4x^2 \h''(x^2) - 2\phi\h'(x) - \phi x \h''(x) \\ f'''(x) &= 4x \h''(x^2) + 8x \h''(x^2) + 8x^3\h'''(x^2) - 3\phi\h''(x) - \phi x\h'''(x) \\ &= 12x \h''(x^2) + 8x^3 \h'''(x^2) - 3\phi \h''(x) - \phi x \h'''(x) \\ \end{align*} So \begin{align*} \ln 2 f'''(x) &= \frac{-12x}{x^2(1 - x^2)} + \frac{8x^3(1 - 2x^2)}{x^4(1 - x^2)^2} + \frac{3\phi}{x(1 - x)} - \frac{\phi x(1 - 2x)}{x^2(1 - x)^2} \\ &= \frac{-12}{x(1 - x^2)} + \frac{8(1 - 2x^2)}{x(1 - x^2)^2} + \frac{3\phi}{x(1 - x)} - \frac{\phi(1 - 2x)}{x(1 - x)^2} \\ &= \frac{-12(1 - x^2) + 8(1 - 2x^2) + 3\phi(1 - x)(1+ x)^2 - \phi(1 - 2x)(1 + x)^2} {x(1 - x)^2(1 + x)^2} \end{align*} This is zero if and only if \[ -12 + 12x^2 + 8 - 16x^2 + 3\phi(1 + x - x^2 -x^3) - \phi(1 - 3x^2 - 2x^3) = 0 \] which simplifies to \[ -\phi x^3 - 4x^2 + 3\phi x - 4 + 2\phi = 0 .\]