%! TEX root = EMC.tex % vim: tw=50 % 18/02/2025 09AM \vspace{-2em} where $\h(p) = p \log \frac{1}{p} + (1 - p) \log \frac{1}{1 - p}$ and $s = \cent{X_{k + 1}}{X_1, \ldots, X_k}$. It turns out that this is maximised when $p = \frac{2^s}{2^s + 1}$. Then we get \[ \frac{2^s}{2^s + 1} (\log(2^s + 1) - \log 2^s) + \frac{\log(2^s + 1)}{2^s + 1} + \frac{s2^s}{2^s + 1} = \log(2^s + 1) .\] This proves the claim. Let $r = 2^{\cent{X_d}{X_1, \ldots, X_{d - 1}}}$. Then \begin{align*} \ent X &= \ent{X_1} + \cdots + \cent{X_d}{X_1, \ldots, X_{d - 1}} \\ &\ge \log r + \log(r + 1) + \cdots + \log(r + d - 1) \\ &= \log \left( \frac{(r + d - 1)!}{(r - 1)!} \right) \\ &= \log \left( d! {r + d - 1 \choose d} \right) \end{align*} Since $\ent X = \log \left( d! {t \choose d} \right)$, it follows that \[ r + d - 1 \le t, \qquad r \le t + 1 - d .\] It follows that \begin{align*} \ent{X_1, \ldots, X_{d - 1}} &= \log \left( d! {t \choose d} \right) - \log r \\ &\ge \log \left( d! \frac{t!}{d!(t - d)!(t + 1 - d)} \right) \\ &= \log \left( (d - 1)! {t \choose d - 1} \right) \qedhere \end{align*} \end{proof} \newpage \section{The union-closed conjecture} \begin{fcdefnstar}[Union-closed] \glsadjdefn{uclosed}{union-closed}{family}% Let $\mathcal{A}$ be a (finite) family of sets. Say that $\mathcal{A}$ is \emph{union closed} if for any $A, B \in \mathcal{A}$, we have $A \cup B \in \mathcal{A}$. \end{fcdefnstar} \begin{fcconjstar}[] If $\mathcal{A}$ is a non-empty \gls{uclosed} family, then there exists $x$ that belongs to at least $\half |\mathcal{A}|$ sets in $\mathcal{A}$. \end{fcconjstar} \glsnoundefn{gilmer}{Justin Gilmer's Theorem}{}% \begin{fcthmstar}[Justin Gilmer] % \label{thm:5.1} There exists $c > 0$ such that if $\mathcal{A}$ is a \gls{uclosed} family, then there exists $x$ that belongs to at least $c|\mathcal{A}|$ of the sets in $\mathcal{A}$. \end{fcthmstar} Justin Gilmer's constant was about $\frac{1}{100}$. His method has a ``natural barrier'' of $\frac{3 - \sqrt{5}}{2}$. We will briefly and ``informally'' discuss this. A reason for this is that if we weaken the property \gls{uclosed} to ``almost union-closed'' (if we pick two elements randomly, then with high probability the union is in the family), then $\frac{3 - \sqrt{5}}{2}$ is the right bound. Let $\mathcal{A} = [n]^{(pn)} \cup [n]^{(\ge (2p - p^2 - o(1))n)}$. With high probability, if $A, B$ are random elements of $[n]^{(pn)}$, then $|A \cup B| \ge (2 p -p^2 - o(1))n$. If $1 - (2p - p^2 - o(1)) = p$ then almost all of $\mathcal{A}$ is $[n]^{(pn)}$. \begin{center} \includegraphics[width=0.3\linewidth]{images/3dc18982fa724acf.png} \end{center} One of the roots of the quadratic $1 - 3p + p^2 = 0$ is $p = \frac{3 - \sqrt{5}}{2}$. If we want to prove \gls{gilmer}, it is natural to let $A, B$ be independent uniformly random elements of $\mathcal{A}$ and to consider $\ent{A \cup B}$. Since $\mathcal{A}$ is \gls{uclosed}, $A \cup B \in \mathcal{A}$, so $\ent{A \cup B} \le \log|\mathcal{A}|$. Now we would like to get a lower bound for $\ent{A \cup B}$ assuming that no $x$ belongs to more than $p|\mathcal{A}|$ sets in $\mathcal{A}$. \[ \h(xy) \ge c(x\h(y) + y\h(x)), \qquad \h(x^2) \ge 2cx\h(x) .\]