%! TEX root = EMC.tex % vim: tw=50 % 13/02/2025 09AM \begin{fcdefnstar}[Edge-boundary] \glssymboldefn{bound}% Let $G$ be a graph and let $A \subset V(G)$. The \emph{edge-boundary} $\partial A$ of $A$ is the set of edges $xy$ such that $y \notin A$. If $G = \Zbb^n$ or $\{0, 1\}^n$ and $i \in [n]$, then the $i$-th boundary $\partial_i A$ is the set of edges $xy \in \partial A$ such that $x - y = \pm e_i$, i.e. $\partial_i A$ consists of deges pointing in direction $i$. \end{fcdefnstar} \begin{fcthm}[Edge-isoperimetric inequality in $Z^n$] \label{thm:4.6} Assuming: - $A \subset \Zbb^n$ a finite set Then: $|\ebound A| \ge 2n|A|^{\frac{n - 1}{n}}$. \end{fcthm} \begin{proof} By the \gls{thm:dlw} inequality, \begin{align*} |A| &\le \prod_{i = 1}^n |P_{[n] \setminus \{i\}} A|^{\frac{1}{n - 1}} \\ &= \left( \prod_{i = 1}^n |P_{[n] \setminus \{i\}} A|^{\frac{1}{n}} \right)^{\frac{n}{n - 1}} \\ &\le \left( \frac{1}{n} \sum_{i = 1}^n |P_{[n] \setminus \{i\}} A| \right)^{\frac{n}{n - 1}} \end{align*} But $|\ebound_i A| \ge 2|P_{[n] \setminus \{i\}} A|$ since each fibre contributes at least 2. So \begin{align*} |A| &\le \left( \frac{1}{2n} \sum_{i = 1}^{n} |\ebound_i A| \right)^{\frac{n}{n - 1}} \\ &= \left( \frac{1}{2n} |\ebound A| \right)^{\frac{n}{n - 1}} \qedhere \end{align*} \end{proof} \begin{fcthm}[Edge-isoperimetric inequality in the cube] \label{thm:4.7} Assuming: - $A \subset \{0, 1\}^n$ (where we take the usual graph) Then: $|\ebound A| \ge |A| (n - \log |A|)$. \end{fcthm} \begin{proof} Let $X$ be a uniform random element of $A$ and write $X = (X_1, \ldots, X_n)$. Write $X_{\setminus i}$ for $(X_1, \ldots, X_{i - 1}, X_{i + 1}, \ldots, X_n)$. By \nameref{lemma:4.1}, \begin{align*} \ent X &\le \frac{1}{n - 1} \sum_{i = 1}^{r} \ent{X_{\setminus i}} \\ &= \frac{1}{n - 1} \sum_{i = 1}^{n} \ent X - \cent{X_i}{X_{\setminus i}} \end{align*} Hence \[ \sum_{i = 1}^{n} \cent{X_i}{X_{\setminus i}} \le \ent X .\] Note \[ \cent{X_i}{X_{\setminus i} = u} = \begin{cases} 1 & |P_{[n] \setminus \{i\}}^{-1}(u)| = 2 \\ 0 & |P_{[n] \setminus \{i\}}^{-1}(u)| = 1 \end{cases} \] The number of points of the second kind is $|\partial_i A|$, so $\cent{X_i}{X_{\setminus i}} = 1 - \frac{|\partial_i A|}{|A|}$. So \begin{align*} \ent X &\ge \sum_{i = 1}^{n} \left( 1 - \frac{|\ebound_i A|}{|A|} \right) \\ &= n - \frac{|\ebound A|}{|A|} \end{align*} Also, $\ent X = \log |A|$. So we are done. \end{proof} \begin{fcdefnstar}[Lower shadow] \glssymboldefn{shadow}% Let $\mathcal{A}$ be a family of sets of size $d$. The \emph{lower shadow} $\partial \mathcal{A}$ is $\{B : |B| = d - 1, \exists A \in \mathcal{A}, B \subset A\}$. \end{fcdefnstar} \begin{notation*} \glssymboldefn{h}% Let $h(x) = x\log \frac{1}{x} + (1 - x) \log \frac{1}{1 - x}$ (for $x \in [0, 1]$). \end{notation*} \begin{fcthm}[Kruskal-Katona] Assuming: - $|\mathcal{A}| = {t \choose d} = \frac{t(t - 1) \cdots (t - d - 1)}{d!}$ for some real number $t$ Then: $|\shadow \mathcal{A}| \ge {t \choose d - 1}$. \end{fcthm} \begin{proof} Let $X = (X_1, \ldots, X_d)$ be a random ordering of the elements of a uniformly random $A \in \mathcal{A}$. Then \[ \ent X = \log\left(d! {t \choose d}\right) .\] Note that $(X_1, \ldots, X_{d - 1})$ is an ordering of the elements of some $B \in \shadow \mathcal{A}$, so \[ \ent{X_1, \ldots, X_{d - 1}} \le \log\left((d - 1)! |\shadow \mathcal{A}|\right) .\] So it's enough to show \[ \ent{X_1, \ldots, X_{d - 1}} \ge \log\left((d - 1)! {t \choose d - 1}\right) .\] Also, \[ \ent X = \ent{X_1, \ldots, X_{d - 1}} + \cent{X_d}{X_1, \ldots, X_{d - 1}} \] and \[ \ent X = \ent{X_1} + \cent{X_2}{X_1} + \cdots + \cent{X_d}{X_1, \ldots, X_{d - 1}} .\] We would like an \emph{upper bound} for $\ent{X_d}{X_{