%! TEX root = EMC.tex % vim: tw=50 % 11/02/2025 09AM Alternative version: \begin{fclemma}[Shearer, expectation version] \label{lemma:4.2} Assuming: - $X = (X_1, \ldots, X_n)$ a random variable - $A \subset [n]$ a randomly chosen subset of $[n]$, according to some probability distribution (don't need any independence conditions!) - for each $i \in [n]$, $\Pbb[i \in A] \ge \mu$ Then: \[ \ent X \le \mu^{-1} \Ebb_A \ent{X_A} .\] \end{fclemma} \begin{proof} As before, \[ \ent{X_A} \ge \sum_{a \in A} \cent{X_a}{X_{< a}} .\] So \begin{align*} \Ebb_A \ent{X_A} &\ge \Ebb_A \sum_{a \in A} \cent{X_a}{X_{< a}} \\ &\ge \mu \sum_{a = 1}^n \cent{X_a}{X_{