%! TEX root = EMC.tex % vim: tw=50 % 04/02/2025 09AM We can choose $X_1 Y_1$ in three equivalent ways: \begin{enumerate}[(1)] \item Pick an edge uniformly from all edges. \item Pick a vertex $x$ with probability proportional to its degree $d(x)$, and then pick a random neighbour $y$ of $x$. \item Same with $x$ and $y$ exchanged. \end{enumerate} It follows that $Y_1 = y$ with probability $\frac{d(y)}{|E(G)|}$, so $X_2 Y_1$ is uniform in $E(G)$, so $X_2 = x'$ with probability $\frac{d(x')}{|E(G)|}$, so $X_2 Y_2$ is uniform in $E(G)$. Therefore, \begin{align*} \ent{X_1, Y_1, X_2, Y_2} &= \ent{X_1} + \cent{Y_1}{X_1} + \cent{X_2}{X_1, Y_1} + \cent{Y_2}{X_1, Y_1, X_2} \\ &= \ent{X_1} + \cent{Y_1}{X_1} + \cent{X_2}{Y_1} + \cent{Y_2}{X_2} \\ &= \ent{X_1} + \ent{X_1, Y_1} - \ent{X_1} + \ent{X_2, Y_1} - \ent{Y_1} + \ent{Y_2, X_2} - \ent{X_2} \\ &= 3\ent{U_{E(G)}} - \ent{Y_1} - \ent{X_2} \\ &\ge 3\ent{U_{E(G)}} - \ent{U_Y} - \ent{U_X} \\ &= 3\log(\alpha mn) - \log m - \log n \\ &= \log(\alpha^3 m^2 n^2) \end{align*} So we are done my \gls{maximality}. Alternative finish (to avoid using $\log$!): Let $X', Y'$ be uniform in $X, Y$ and independent of each other and $X_1, Y_1, X_2, Y_2$. Then: \begin{align*} \ent{X_1, Y_2, X_2, Y_2, X', Y'} &= \ent{X_1, Y_1, X_2, Y_2} + \ent{U_X} + \ent{U_Y} \\ &\ge 3\ent{U_{E(G)}} \end{align*} So by \gls{maximality}, \[ \#P_3s \times |X| \times |Y| \ge |E(G)|^3 . \qedhere \] \end{proof} \newpage \section{Br\'egman's Theorem} \begin{fcdefnstar}[Permanent of a matrix] \glssymboldefn{per}% Let $A$ be an $n \times n$ matrix over $\Rbb$. The \emph{permanent} of $A$, denoted $\perinternal(A)$, is \[ \sum_{\sigma \in S_n} \prod_{i = 1}^n A_{i\sigma(i)} ,\] i.e. ``the determinant without the signs''. \end{fcdefnstar} Let $G$ be a bipartite graph with vertex sets $X, Y$ of size $n$. Given $(x, y) \in X_Y$, let \[ A_{xy} = \begin{cases} 1 & xy \in E(G) \\ 0 & xy \notin E(G) \end{cases} \] ie $A$ is the bipartite adjacency matrix of $G$. Then $\per(A)$ is the number of perfect matchings in $G$. Br\'egman's theorem concerns how large $\per(A)$ can be if $A$ is a $01$-matrix and the sum of entres in the $i$-th row is $d_i$. Let $G$ be a disjoint union of $K_{a_i a_i}$s for $i = 1, \ldots, k$, with $a_1 + \cdots + a_k = n$. Then the number of perfect matchings in $G$ is \[ \prod_{i = 1}^k a_i! .\] \begin{fcthm}[Bregman] \label{thm:3.1} % [Br\'egman] Assuming: - $G$ a bipartite graph with vertex sets $X, Y$ of size $n$ Then: the number of perfect matchings in $G$ is at most \[ \prod_{x \in X} (d(x)!)^{\frac{1}{d(x)}} .\] \end{fcthm} \begin{proof}[Proof (Radhakrishnan)] Each matching corresponds to a bijection $\sigma : X \to Y$ such that $x\sigma(x) \in E(G)$ for every $x$. Let $\sigma$ be chosen uniformly from all such bijections. \[ \ent{\sigma} = \ent{\sigma(x_1)} + \cent{\sigma(x_2)}{\sigma(x_1)} + \cdots + \cent{\sigma(x_n)}{\sigma(x_1), \ldots, \sigma(x_{n - 1})} ,\] where $x_1, \ldots, x_n$ is some enumeration of $X$. Then \begin{align*} \ent{\sigma(x_1)} &\le \log d(x_1) \\ \cent{\sigma(x_2)}{\sigma(x_1)} &\le \Ebb_\sigma \log d_{x_1}^\sigma(x_2) \end{align*} where \[ d_{x_i}^\sigma(x_2) = |N(x_2) \setminus \{\sigma(x_1)\}| .\] In general, \[ \ent{\sigma(x_i)}{\sigma(x_1), \ldots, \sigma(x_{i - 1})} \le \Ebb_\sigma \log d_{x_1, \ldots, x_{i - 1}}^\sigma(x_i) ,\] where \[ d_{x_1, \ldots, x_{i - 1}}^\sigma(x_i) = |N(x_i) \setminus \{\sigma(x_1), \ldots, \sigma(x_{i - 1})\}| .\]