%! TEX root = EMC.tex % vim: tw=50 % 28/01/2025 09AM \begin{fcprop}[] \label{prop:1.7} Assuming: - $X$ is uniformly distributed on a set $A$ of size $n$ Then: $\ent X = \log n$. \end{fcprop} Reminder: $\log$ here is to the base $2$ (which is the convention for this course). \begin{proof} Let $r$ be a positive integer and let $X_1, \ldots, X_r$ be independent copies of $X$. Then $(X_1, \ldots, X_r)$ is uniform on $A^r$ and \[ \ent{X_1, \ldots, X_r} = r\ent X .\] Now pick $k$ such that $2^k \le n^r \le 2^{k + 1}$. Then by \gls{invariance}, \gls{maximality}, and \cref{prop:1.6}, we have that \[ k \le r \ent X \le k + 1 .\] So \[ \frac{k}{r} \le \log n \le \frac{k + 1}{r} \implies \frac{k}{r} \le \ent X \le \frac{k + 1}{r} \qquad \forall k, r \] Therefore, $\ent X = \log n$ as claimed. \end{proof} \begin{notation*} We will write $p_a = \Pbb[X = a]$. We will also use the notation $[n] = \{1, 2, \ldots, n\}$. \end{notation*} \begin{fcthm}[Khinchin] \label{thm:1.8} Assuming: - $H$ satisfies the Khinchin axioms - $X$ takes values in a finite set $A$ Then: \[ \ent X = \sum_{a \in A} p_a \log \left( \frac{1}{p_a} \right) .\] \end{fcthm} \begin{proof} First we do the case where all $p_a$ are rational (and then can finish easily by the \gls{continuity} axiom). Pick $n \in \Nbb$ such that for all $a$, there is some $m_a \in \Nbb \cup \{0\}$ such that $p_a = \frac{m_a}{n}$. Let $Z$ be uniform on $[n]$. Let $(E_a : a \in A)$ be a partition of $[n]$ into sets with $|E_a| = m_a$. By \gls{invariance} we may assume that $X = a \iff Z \in E_a$. Then \begin{align*} \log n &= \ent Z \\ &= \ent{Z, X} \\ &= \ent X + \cent ZX \\ &= \ent X + \sum_{a \in A} p_a \cent Z{X = a} \\ &= \ent X + \sum_{a \in A} p_a \log(m_a) \\ &= \ent X + \sum_{a \in A} p_a (\log p_a + \log n) \end{align*} Hence \[ \ent X = -\sum_{a \in A} p_a \log p_a = \sum_{a \in A} p_a \log \left( \frac{1}{p_a} \right) .\] By \gls{continuity}, since this holds if all $p_a$ are rational, we conclude that the formula holds in general. \end{proof} \begin{fccoro}[] \label{coro:1.9} Assuming: - $X$ and $Y$ random variables Then: $\ent X \ge 0$ and $\cent XY \ge 0$. \end{fccoro} \begin{proof} Immediate consequence of \cref{thm:1.8}. \end{proof} \begin{fccoro}[] \label{coro:1.10} Assuming: - $Y = f(X)$ Then: $\ent Y \le \ent X$. \end{fccoro} \begin{proof} $\ent X = \ent{X, Y} = \ent Y + \cent XY$. But $\cent XY \ge 0$. \end{proof} \begin{fcprop}[Subadditivity] \label{prop:1.11} \label{subadd} Assuming: - $X$ and $Y$ be random variables Then: $\ent{X, Y} \le \ent X + \ent Y$. \end{fcprop} \begin{proof} Note that for any two random variables $X, Y$ we have \begin{align*} \ent{X, Y} &\le \ent X + \ent Y \\ \iff \cent XY &\le \ent X \\ \iff \cent YX &\le \ent Y \end{align*} Next, observe that $\cent XY \le \ent X$ if $X$ is uniform on a finite set. That is because \begin{align*} \cent XY &= \sum_y \Pbb[Y = y] \cent X{Y = y} \\ &\le \sum_y \Pbb[Y = y] \ent X &&\text{(by \gls{maximality})} \\ &= \ent X \end{align*} By the equivalence noted above, we also have that $\cent XY \le \ent X$ if $Y$ is uniform. Now let $p_{ab} = \Pbb[(X, Y) = (a, b)]$ and assume that all $p_{ab}$ are rational. Pick $n$ such that we can write $p_{ab} = \frac{m_{ab}}{n}$ with each $m_{ab}$ an integer. Partition $[n]$ into sets $E_{ab}$ of size $m_{ab}$. Let $Z$ be uniform on $[n]$. Without loss of generality (by \gls{invariance}) $(X, Y) = (a, b) \iff Z \in E_{ab}$. Let $E_b = \cup_a E_{ab}$ for each $b$. So $Y = b \iff Z \in E_b$. Now define a random variable $W$ as follows: If $Y = b$, then $W \in E_b$, but then $W$ is uniformly distributed in $E_b$ and independent of $X$ (or $Z$ if you prefer). So $W$ and $X$ are conditionally independent given $Y$, and $W$ is uniform on $[n]$. Then \begin{align*} \cent XY &= \cent X{Y, W} &&\text{(by conditional independence)} \\ &= \cent XW &&\text{(as $W$ determines $Y$)} \\ &\le \ent X &&\text{(as $W$ is uniform)} \end{align*} By \gls{continuity}, we get the result for general probabilities. \end{proof} \begin{fccoro}[] \label{coro:1.12} Assuming: - $X$ a random variable Then: $\ent X \ge 0$. \end{fccoro} \begin{proof}[Proof (Without using formula)] By \nameref{prop:1.11}, $\cent XX \le \ent X$. But $\cent XX = 0$. \end{proof} \begin{fccoro}[] \label{coro:1.13} Assuming: - $X_1, \ldots, X_n$ are random variables Then: \[ \ent{X_1, \ldots, X_n} \le \ent{X_1} + \cdots + \ent{X_n} .\] \end{fccoro} \begin{proof} Induction using \nameref{prop:1.11}. \end{proof} \begin{fcprop}[Submodularity] \label{prop:1.14} \label{submod} Assuming: - $X, Y, Z$ are random variables Then: \[ \cent X{Y, Z} \le \cent XZ .\] \end{fcprop} \begin{proof} Calculate: \begin{align*} \cent X{Y, Z} &= \sum_z \Pbb[Z = z] \cent X{Y, Z = z} \\ &\le \sum_z \Pbb[Z = z] \cent X{Z = z} \\ &= \cent XZ \qedhere \end{align*} \end{proof} \nameref{prop:1.14} can be expressed in many ways. Expanding using \gls{additivity} gives the following inequalities: \begin{align*} \ent{X, Y, Z} - \ent{Y, Z} &\le \ent{X, Z} - \ent Z \\ \ent{X, Y, Z} &\le \ent{X, Z} + \ent{Y, Z} - \ent Z \\ \ent{X, Y, Z} + \ent Z &\le \ent{X, Z} + \ent{Y, Z} \end{align*}