%! TEX root = EMC.tex % vim: tw=50 % 18/03/2025 09AM \begin{fccoro}[] \label{coro:7.15} % Corollary 7.13 Assuming: - $(U, V)$ is \gls{Crel} to $(X, Y)$ Then: $(U + V, U + V)$ is \glsref[Crel]{$2(C + 1)$-relevant} to $(X, Y)$. \end{fccoro} \begin{proof} \begin{align*} \entd{U + V}X &\le \half (\entd UX + \entd VX + \entd UV) \\ &\le \half (\entd UX + \entd VY + \entd XY + \entd UX + \entd XY + \entd VY) \\ &= \entd UX + \entd VY + \entd XY \end{align*} Similarly for $\entd{U + V}Y$. \end{proof} \begin{fclemma}[] \label{lemma:7.16} % Lemma 7.14 Assuming: - $U, V, X$ are independent $\Fbb_2^n$-valued random variables Then: \[ \entd{U \mid U + V}X \le \half (\entd UX + \entd VX + \entd UV) .\] \end{fclemma} \begin{proof} \begin{align*} \entd{U \mid U + V}X &\le \cent{U + X}{U + V} - \half \cent{U}{U + V} - \half \ent X \\ &\le \ent{U + X} - \half \ent U - \half \ent V + \half \ent{U + V} - \half \ent X \end{align*} But $\entd{U \mid U + V}X = \entd{V \mid U + V}X$, so it's also \[ \le \ent{V + X} - \half \ent U - \half \ent V + \half \ent{U + V} - \half \ent X .\] Averaging the two inequalities gives the result (as earlier). \end{proof} \begin{fccoro}[] \label{coro:7.17} % Corollary 7.15 Assuming: - $U, V$ are independent random variables - $(U, V)$ is \gls{Crel} to $(X, Y)$ Thens:[(i)] - $(U_1 \mid U_1 + U_2, V_1 \mid V_1 + V_2)$ is \glsref[Crel]{$2C$-relevant} to $(X, Y)$. - $(U_1 \mid U_1 + V_1, U_2 \mid U_2 + V_2)$ is \glsref[Crel]{$2(C + 1)$-relevant} to $(X, Y)$. \end{fccoro} \begin{proof} Use \cref{lemma:7.16}. Then as soon as it is used, we are in exactly the situation we were in when bounding the relevance of $(U_1 + U_2, V_1 + V_2)$ and $(U_1 + V_1, U_2 + V_2)$. \end{proof} It remains to tackle the last two terms in \cref{lemma:7.10}. For the fifth term we need to bound \[ \entd{X_1 + X_2 \mid X_2 + Y_1, X_1 + Y_2}X + \entd{X_1 + Y_1 \mid X_2 + Y_1, X_1 + Y_2}Y .\] But first term of this is at most (by \cref{lemma:7.12}) \[ \half( \entd{X_1}{X_2 + Y_1, X_1 + Y_2}{X} + \entd{X_2 \mid X_1 + Y_1, X_1 + Y_2}{X} + \scentd{X_1}{X_2}{X_2 + Y_1, X_1 + Y_2} ) .\] By \nameref{lemma:6.7} and independence, this is at most \begin{align*} &\le \entd{X_1 \mid X_1 + Y_2}{X} + \entd{X_2 \mid X_2 + Y_1}{X} \\ &= 2\entd{X \mid X + Y}{X} \end{align*} Now we can use \cref{lemma:7.16}, and similarly for the other terms. In this way, we get that the fifth and sixth terms have relevances bounded above by $\lambda C$ for an absolute constant $\lambda$.