%! TEX root = EMC.tex % vim: tw=50 % 13/03/2025 09AM % So \cref{coro:7.8} now gives us: \begin{align*} \entd{X_1}{X_3} + \entd{X_2}{X_4} &\ge \entd{X_1 + X_2}{X_3 + X_4} + \entd{X_1 \mid X_1 + X_2}{X_3 \mid X_4} \\ &~~\third(\scentd{X_1 + X_2}{X_1 + X_3}{X_2 + X_3, W} \\ &~~+ \cent{X_1 + X_2}{W} + \cent{X_1 + X_3}{W} - \cent{X_2 + X_3}{W} ) \end{align*} Now apply this to $(X_1, X_2, X_3, X_4)$, $(X_1, X_2, X_4, X_3)$ and $(X_1, X_4, X_3, X_2)$ and add. We look first at the entropy terms. We get \begin{align*} &2\cent{X_1 + X_2}{W} + \cent{X_1 + X_4}{W} + \cent{X_1 + X_3}{W} + \cent{X_1 + X_4}{W} + \cent{X_1 + X_2}{W} \\ &~~- 2\cent{X_1 + X_2}{W} - 2\cent{X_2 + X_4}{W} - 2\cent{X_1 + X_2}{W} \\ &= 0 \end{align*} where we made heavy use of the observation that if $i, j, k, l$ are some permutation of $1, 2, 3, 4$, then \[ \cent{X_i + X_j}{W} = \cent{X_k + X_l}{W} .\] This also allowed use e.g. to replace \[ \scentd{X_1 + X_2, X_3 + X_4}{X_1 + X_3, X_2 + X_4}{X_2 + X_3, W} \] by \[ \scentd{X_1 + X_2}{X_1 + X_3}{X_2 + X_3, W} .\] Therefore, we get the following inequality: \begin{fclemma}[] \label{lemma:7.9} % Lemma 7.7 \begin{align*} &\mathcloze[1]{2\entd{X_1}{X_2} + 2\entd{X_3}{X_4} + \entd{X_1}{X_4} + \entd{X_2}{X_3}} \\ &\ge \mathcloze[2]{2\entd{X_1 + X_2}{X_3 + X_4} + \entd{X_1 + X_4}{X_2 + X_3}} \\ &~~+ \mathcloze[3]{2\centd{X_1}{X_1 + X_2}{X_3}{X_3 + X_4} + \centd{X_1}{X_1 + X_4}{X_2}{X_2 + X_3}} \\ &~~+ \mathcloze[4]{\third\bigg( \scentd{X_1 + X_2}{X_1 + X_3}{X_2 + X_3, W} + \scentd{X_1 + X_2}{X_1 + X_4}{X_2 + X_4, W}} \\ &~~+ \mathcloze[5]{\scentd{X_1 + X_4}{X_1 + X_3}{X_3 + X_4, W} \bigg)} \end{align*} \end{fclemma} \begin{proof} Above. \end{proof} Now let $X_1, X_2$ be copies of $X$ and $Y_1, Y_2$ copies of $Y$ and apply \cref{lemma:7.9} to $(X_1, X_2, Y_1, Y_2)$ (all independent), to get this. \begin{fclemma}[] \label{lemma:7.10} % Lemma 7.8 Assuming: - $X_1, X_2, Y_1, Y_2$ satisfy: $X_1$ and $X_2$ are copies of $X$, $Y_1$ and $Y_2$ are copies of $Y$, and all of them are independent Then: \begin{align*} &\mathcloze{6\entd XY} \\ &\mathcloze{\ge 2\entd{X_1 + X_2}{Y_1 + Y_2} + \entd{X_1 + Y_2}{X_2 + Y_1}} \\ &~~\mathcloze{+ 2\centd{X_1}{X_1 + X_2}{Y_1}{Y_1 + Y_2} + \centd{X_1}{X_1 + Y_1}{X_2}{X_2 + Y_2}} \\ &~~\mathcloze{+ \frac{2}{3} \scentd{X_1 + X_2}{X_1 + Y_1}{X_2 + Y_1, X_1 + Y_2}} \\ &~~\mathcloze{+ \third\scentd{X_1 + Y_1}{X_1 + Y_2}{X_1 + X_2, Y_1 + Y_2}} \end{align*} OR? TODO: figure out which is correct \begin{align*} &6\entd XY \\ &\ge 2\entd{X_1 + X_2}{Y_1 + Y_2} + \entd{X_1 + Y_1}{X_2 + Y_2} \\ &~~+ 2\centd{X_1}{X_1 + X_2}{Y_1}{Y_1 + Y_2} + \centd{X_1}{X_1 + Y_1}{X_2}{X_2 + Y_2} \\ &~~+ \frac{2}{3} \centd{X_1 + X_2}{X_1 + Y_1}{X_2 + Y_1}{X_1 + Y_2} \\ &~~+ \frac{1}{3} \centd{X_1 + Y_1}{X_1 + Y_2}{X-1 + X_1}{Y_1 + Y_2} \end{align*} \end{fclemma} \begin{proof} Use above. \end{proof} Recall that we want $(U, V)$ such that \begin{align*} \tau_{X, Y}[U; V] &= \entd UV + \eta(\entd UX + \entd VY) \\ &< \entd XY \end{align*} \cref{lemma:7.10} gives us a collection of distances (some conditioned), at least one of which is at most $\frac{6}{7} \entd XY$. So it will be enough to show that for all of them we get \[ \entd UX + \entd VY \le C \entd XY ,\] for some absolute constant $C$. Then we can take $\eta < \frac{1}{7C}$. \begin{fcdefnstar}[$C$-relevant] \glsadjdefn{Crel}{$C$-relevant}{variables}% Say that $(U, V)$ is \emph{$C$-relevant} to $(X, Y)$ if \[ \entd UX + \entd VY \le C \entd XY .\] \end{fcdefnstar} \begin{fclemma}[] \label{lemma:7.11} % Lemma 7.9 $(Y, X)$ is \cloze{\glsref[Crel]{$2$-relevant} to $(X, Y)$.} \end{fclemma} \begin{proof} $\entd YX + \entd XY = 2\entd XY$. \end{proof} \begin{fclemma}[] \label{lemma:7.12} % Lemma 7.10 Assuming: - $U, V, X$ be independent $\Fbb_2^n$-valued random variables Then: \[ \entd{U + V}{X} \le \half ( \entd UX + \entd VX + \entd UV ) .\] \end{fclemma} \begin{proof} \begin{align*} \entd{U + V}{X} &= \ent{U + V + X} - \half \ent{U + V} - \half \ent X \\ &= \ent{U + V + X} - \ent{U + V} + \half \ent{U + V} - \half \ent X \\ &\le \half \ent{U + X} - \half \ent U + \half \ent{V + X} - \half \ent V + \half \ent{U + V} - \half \ent X \\ &= \half( \entd UX + \entd VX + \entd UV ) \qedhere \end{align*} \end{proof} \begin{fccoro}[] \label{coro:7.13} % Corollary 7.11 Assuming: - $(U, V)$ is \gls{Crel} to $(X, Y)$ - $U_1, U_2, V_1, V_2$ are independent copies of $U, V$ Then: $(U_1 + U_2, V_1 + V_2)$ is \glsref[Crel]{$2C$-relevant} to $(X, Y)$. \end{fccoro} \begin{proof} \begin{align*} &\entd{U_1 + U_2}{X} + \entd{V_1 + V_2}{Y} \\ &\le \half( 2\entd UV + \entd UU + 2\entd VY + \entd VV ) &&\text{(by \cref{lemma:7.12})} \\ &\le 2( \entd UX + \entd VY ) &&\text{(by \nameref{lemma:6.7})} \\ &\le 2C\entd XY \end{align*} \end{proof} \begin{fccoro}[] \label{coro:7.14} % Corollary 12 \cloze{$(X_1 + X_2, Y_1 + Y_2)$} is \cloze{\glsref[Crel]{$4$-relevant} to $(Y, X)$.} \end{fccoro} \begin{proof} $(X, Y)$ is \glsref[Crel]{$2$-relevant} to $(Y, X)$, so by \cref{coro:7.13} we're done. \end{proof} \begin{fccorostar}[] % \label{coro:7.15} % Corollary 13 Assuming: - $(U, V)$ is \gls{Crel} to $(X, Y)$ Then: $(U + V, U + V)$ is \glsref[Crel]{$(3C + 2)$-relevant} to $(X, Y)$. \end{fccorostar} \begin{proof} By \cref{lemma:7.12}, \begin{align*} \entd{U + V}X + \entd{U + V}Y &\le \half \big( \entd UX + \entd VX + \entd UY + \entd VY + 2\entd UV \big) \\ &\le \half ( 2\entd UX + 4\entd UV + 2\entd VY ) \\ &\le \half( 6\entd UX + 6\entd VY + 4\entd XY ) \qedhere \end{align*} \end{proof}