%! TEX root = EMC.tex % vim: tw=50 % 04/03/2025 09AM \begin{fclemma}[] \label{lemma:6.9} Assuming: - $G$ an abelian group - $X$ a $G$-valued random variable Then: \[ \entd{X}{-X} \le 2\entd{X}{X} .\] \end{fclemma} \begin{proof} Let $X_1$, $X_2$, $X_3$ be independent copies of $X$. Then \begin{align*} \entd{X}{-X} &= \ent{X_1 + X_2} - \half \ent{X_1} - \half \ent{X_2} \\ &\le \ent{X_1 + X_2 - X_3} - \ent X \\ &\le \ent{X_1 - X_3} + \ent{X_2 - X_3} - \ent{X_3} - \ent X \\ &= 2\entd{X}{X} \end{align*} (as $X_1, X_2, X_3$ are all copies of $X$). \end{proof} \begin{fccoro}[] \label{lemma:6.10} Assuming: - $X$ and $Y$ are $G$-valued random variables Then: \[ \entd{X}{-Y} \le 5 \entd{X}{Y} .\] \end{fccoro} \begin{proof} \begin{align*} \entd{X}{-Y} &\le \entd XY + \entd{Y}{-Y} \\ &\le \entd XY + 2\entd YY \\ &\le \entd XY + 2(\entd YX + \entd XY) \\ &= 5 \entd XY \qedhere \end{align*} \end{proof} \subsubsection*{Conditional Distances} \begin{fcdefnstar}[Conditional distance] \glssymboldefn{centdist}% Let $X, Y, U, V$ be $G$-valued random variables (in fact, $U$ and $V$ don't have to be $G$-valued for the definition to make sense). Then the \emph{conditional distance} is \[ d[X \mid U ; Y \mid V] = \sum_{u, v} \Pbb[U = u] \Pbb[V = v] \entd{X \mid U = u}{Y \mid V = v} .\] \end{fcdefnstar} The next definition is not completely standard. \begin{fcdefnstar}[Simultaneous conditional distance] \glssymboldefn{scentd}% \glsnoundefn{condindept}{conditionally independent trials}{NA}% Let $X, Y, U$ be $G$-valued random variables. The \emph{simultaneous conditional distance of $X$ to $Y$ given $U$} is \[ d[X ; Y \| U] = \sum_u \Pbb[U = u] \entd{X \mid U = u}{Y \mid U = u} .\] We say that $X'$, $Y'$ are \emph{conditionally independent trials} of $X$, $Y$ given $U$ if: \begin{itemize} \item $X'$ is distributed like $X$. \item $Y'$ is distributed like $Y$. \item For each $u \in U$, $X' \mid U = u$ is distributed like $X \mid U = u$, \item For each $u \in U$, $Y' \mid U = u$ is distributed like $Y \mid U = u$. \item $X' \mid U = u$ and $Y' \mid U = u$ are independent. \end{itemize} Then \[ d[X; Y \| U] = \cent{X' - Y'}U - \half \cent{X'}U - \half \cent{Y'}U \] (as can be seen directly from the formula). \end{fcdefnstar} \begin{fclemma}[The entropic BSG theorem] \label{lemma:6.11} Assuming: - $A$ and $B$ are $G$-valued random variables Then: \[ \scentd{A}{B}{A+B} \le 3 \muti AB + 2\ent{A + B} - \ent A - \ent B .\] \end{fclemma} \begin{remark*} The last few terms look like $2\entd{A}{-B}$. But they aren't equal to it, because $A$ and $B$ aren't (necessarily) independent! \end{remark*} \begin{proof} \[ \scentd{A}{B}{A + B} = \cent{A' - B'}{A + B} - \half \cent{A'}{A + B} - \half \cent{B'}{A + B} \] where $A'$, $B'$ are \gls{condindept} of $A$, $B$ given $A + B$. Now calculate \begin{align*} \cent{A'}{A + B} &= \cent{A}{A + B} \\ &= \ent{A, A + B} - \ent{A + B} \\ &= \ent{A, B} - \ent{A + B} \\ &= \ent A + \ent B - \muti AB - \ent{A + B} \end{align*} Similarly, $\cent{B'}{A + B}$ is the same, so $\half \cent{A'}{A + B} + \half \cent{B'}{A + B}$ is also the same. \[ \cent{A' - B'}{A + B} \le \ent{A' - B'} .\] Let $(A_1, B_1)$ and $(A_2, B_2)$ be conditionally independent trials of $(A, B)$ given $A + B$. Then $\ent{A' - B'} = \ent{A_1 - B_2}$. By \nameref{submod}, \begin{align*} \ent{A_1 - B_2} &\le \ent{A_1 - B_2, A} + \ent{A_1 - B_2, B_1} - \ent{A_1 - B_2, A_1, B_1} \\ \ent{A_1 - B_2, A_1} &= \ent{A_1, B_2} \\ &\le \ent{A_1} + \ent{B_2} \\ &= \ent A + \ent B \\ \ent{A_1 - B_2, B_1} &= \ent{A_2 - B_1, B_1} &&\text{(since $A_1 + B_1 = A_2 + B_2$)} \\ &= \ent{A_2, B_1} \\ &\le \ent A + \ent B \end{align*} Finally, \begin{align*} \ent{A_1 - B_2, A_1, B_1} &= \ent{A_1, B_1, A_2, B_2} \\ &= \cent{A_1, B_1, A_2, B_2}{A + B} + \ent{A + B} \\ &= 2\ent{A, B}{A + B} + \ent{A + B} &&\text{(by conditional independence of $(A_1, B_1)$ and $(A_2, B_2)$)} \\ &= 2\ent{A, B} - \ent{A + B} \\ &= 2\ent A + 2\ent B - 2\muti AB - \ent{A + B} \end{align*} Adding or subtracting as appropriate all these terms gives the required inequality. \end{proof}