Lemma 7.7 (Fibring lemma). Assuming that:

  • G and H are abelian groups

  • ϕ:GH a homomorphism

  • let X, Y be G-valued random variables.

Then
d[X;Y]=d[ϕ(X);ϕ(Y)]+d[X|ϕ(X);Y|ϕ(Y)]+I[XY:ϕ(X),ϕ(Y)|ϕ(X)ϕ(Y)].