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1 The Khinchin (Shannon?) axioms for entropy

Note. In this course, “random variable” will mean “discrete random variable” (unless otherwise
specified).
All logarithms will be base 2 (unless otherwise specified).

Definition (Entropy). The entropy of a discrete random variable X is a quantity H[X] that
takes real values and has the following properties:

(i) Normalisation: If X is uniform on {0, 1} then H[X] = 1.

(ii) Invariance: If X takes values in A, Y takes values in B, f is a bijection from A to B, and
for every a ∈ A we have P[X = a] = P[Y = f(a)], then H[Y ] = H[X].

(iii) Extendability: If X takes values in a set A, and B is disjoint from A, Y takes values in
A ∪B, and for all a ∈ A we have P[Y = a] = P[X = a], then H[Y ] = H[X].

(iv) Maximality: If X takes values in a finite set A and Y is uniformly distributed in A, then
H[X] ≤ H[Y ].

(v) Continuity: H depends continuously on X with respect to total variation distance (defined
by the distance between X and Y is supE |P[X ∈ E]− P[Y ∈ E]|).

For the last axiom we need a definition:
Let X and Y be random variables. The conditional entropy H[X | Y ] of X given Y is∑

y

P[Y = y]H[X | Y = y].

(vi) Additivity: H[X,Y ] = H[Y ] +H[X | Y ].

Lemma 1.1. Assuming that:

• X and Y are independent random variables

Then
H[X,Y ] = H[X] +H[Y ].

Proof. H[X | Y ] =
∑

y P[Y = y]H[X | Y = y].

Since X and Y are independent, the distribution of X is unaffected by knowing Y (so by invariance,
H[X | Y = y] = H[X]), so

H[X | Y = y] = H[X]

for all y, which gives the result.
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Corollary 1.2. If X1, . . . , Xn are independent, then

H[X1, . . . , Xn] = H[X1] + · · ·+H[Xn].

Proof. Lemma 1.1 and obvious induction.

Lemma 1.3 (Chain rule). Assuming that:

• X1, . . . , Xn are random variables

Then

H[X1, . . . , Xn] = H[X1] +H[X2 | X1] +H[X3 | X1, X2] + · · ·+H[Xn | X1, . . . , Xn−1].

Proof. The case n = 2 is additivity. In general,

H[X1, . . . , Xn] = H[X1, . . . , Xn−1] +H[Xn | X1, . . . , Xn−1]

so we are done by induction.

Lemma 1.4. Assuming that:

• Y = f(X)

Then
H[X,Y ] = H[X].

Also,
H[Z | X,Y ] = H[Z | X].

Proof. The map g : x 7→ (x, f(x)) is a bijection, and (X,Y ) = g(X). So the first statement follows by
invariance. For the second statement:

H[Z | X,Y ] = H[Z,X, Y ]−H[X,Y ] (by additivity)
= H[Z,X]−H[X] (by first part)
= H[Z | X] (by additivity)

Lemma 1.5. Assuming that:

• X takes only one value

Then H[X] = 0.
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Proof. X and X are independent. Therefore, by Lemma 1.1, H[X,X] = 2H[X]. But by invariance,
H[X,X] = H[X]. So H[X] = 0.

Proposition 1.6. Assuming that:

• X is uniformly distributed on a set of size 2n

Then H[X] = n.

Proof. Let X1, . . . , Xn be independent random variables uniformly distributed on {0, 1}. By Corol-
lary 1.2 and normalisation, H[X1, . . . , Xn] = n. But (X1, . . . , Xn) is uniformly distributed on {0, 1}n,
so by invariance, the result follows.

Lecture 2

Proposition 1.7. Assuming that:

• X is uniformly distributed on a set A of size n

Then H[X] = log n.

Reminder: log here is to the base 2 (which is the convention for this course).

Proof. Let r be a positive integer and let X1, . . . , Xr be independent copies of X.

Then (X1, . . . , Xr) is uniform on Ar and

H[X1, . . . , Xr] = rH[X].

Now pick k such that 2k ≤ nr ≤ 2k+1. Then by invariance, maximality, and Proposition 1.6, we have
that

k ≤ rH[X] ≤ k + 1.

So
k

r
≤ log n ≤ k + 1

r
=⇒ k

r
≤ H[X] ≤ k + 1

r
∀k, r

Therefore, H[X] = log n as claimed.

Notation. We will write pa = P[X = a].
We will also use the notation [n] = {1, 2, . . . , n}.

Theorem 1.8 (Khinchin). Assuming that:
• H satisfies the Khinchin axioms

• X takes values in a finite set A
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Then
H[X] =

∑
a∈A

pa log

Å
1

pa

ã
.

Proof. First we do the case where all pa are rational (and then can finish easily by the continuity
axiom).

Pick n ∈ N such that for all a, there is some ma ∈ N ∪ {0} such that pa = ma

n .

Let Z be uniform on [n]. Let (Ea : a ∈ A) be a partition of [n] into sets with |Ea| = ma. By invariance
we may assume that X = a ⇐⇒ Z ∈ Ea. Then

log n = H[Z]

= H[Z,X]

= H[X] +H[Z | X]

= H[X] +
∑
a∈A

paH[Z | X = a]

= H[X] +
∑
a∈A

pa log(ma)

= H[X] +
∑
a∈A

pa(log pa + log n)

Hence
H[X] = −

∑
a∈A

pa log pa =
∑
a∈A

pa log

Å
1

pa

ã
.

By continuity, since this holds if all pa are rational, we conclude that the formula holds in general.

Corollary 1.9. Assuming that:

• X and Y random variables

Then H[X] ≥ 0 and H[X | Y ] ≥ 0.

Proof. Immediate consequence of Theorem 1.8.

Corollary 1.10. Assuming that:

• Y = f(X)

Then H[Y ] ≤ H[X].
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Proof. H[X] = H[X,Y ] = H[Y ] +H[X | Y ]. But H[X | Y ] ≥ 0.

Proposition 1.11 (Subadditivity). Assuming that:

• X and Y be random variables

Then H[X,Y ] ≤ H[X] +H[Y ].

Proof. Note that for any two random variables X,Y we have

H[X,Y ] ≤ H[X] +H[Y ]

⇐⇒ H[X | Y ] ≤ H[X]

⇐⇒ H[Y | X] ≤ H[Y ]

Next, observe that H[X | Y ] ≤ H[X] if X is uniform on a finite set. That is because

H[X | Y ] =
∑
y

P[Y = y]H[X | Y = y]

≤
∑
y

P[Y = y]H[X] (by maximality)

= H[X]

By the equivalence noted above, we also have that H[X | Y ] ≤ H[X] if Y is uniform.

Now let pab = P[(X,Y ) = (a, b)] and assume that all pab are rational. Pick n such that we can write
pab =

mab

n with each mab an integer. Partition [n] into sets Eab of size mab. Let Z be uniform on [n].
Without loss of generality (by invariance) (X,Y ) = (a, b) ⇐⇒ Z ∈ Eab.

Let Eb = ∪aEab for each b. So Y = b ⇐⇒ Z ∈ Eb. Now define a random variable W as follows: If
Y = b, then W ∈ Eb, but then W is uniformly distributed in Eb and independent of X (or Z if you
prefer).

So W and X are conditionally independent given Y , and W is uniform on [n].

Then

H[X | Y ] = H[X | Y,W ] (by conditional independence)
= H[X |W ] (as W determines Y )
≤ H[X] (as W is uniform)

By continuity, we get the result for general probabilities.

Corollary 1.12. Assuming that:

• X a random variable
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Then H[X] ≥ 0.

Proof (Without using formula). By Subadditivity, H[X | X] ≤ H[X]. But H[X | X] = 0.

Corollary 1.13. Assuming that:

• X1, . . . , Xn are random variables

Then
H[X1, . . . , Xn] ≤ H[X1] + · · ·+H[Xn].

Proof. Induction using Subadditivity.

Proposition 1.14 (Submodularity). Assuming that:

• X,Y, Z are random variables

Then
H[X | Y, Z] ≤ H[X | Z].

Proof. Calculate:

H[X | Y, Z] =
∑
z

P[Z = z]H[X | Y, Z = z]

≤
∑
z

P[Z = z]H[X | Z = z]

= H[X | Z]

Submodularity can be expressed in many ways.

Expanding using additivity gives the following inequalities:

H[X,Y, Z]−H[Y, Z] ≤ H[X,Z]−H[Z]

H[X,Y, Z] ≤ H[X,Z] +H[Y, Z]−H[Z]

H[X,Y, Z] +H[Z] ≤ H[X,Z] +H[Y, Z]

Lecture 3

Lemma 1.15. Assuming that:

• X,Y, Z random variables
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• Z = f(Y )

Then
H[X | Y ] ≤ H[X | Z].

Proof.

H[X | Y ] = H[X,Y ]−H[Y ]

= H[X,Y, Z]−H[Y, Z]

≤ H[X,Z]−H[Z] (Submodularity)
= H[X | Z]

Lemma 1.16. Assuming that:

• X,Y, Z random variables

• Z = f(X) = g(Y )

Then
H[X,Y ] +H[Z] ≤ H[X] +H[Y ].

Proof. Submodularity says:

H[X,Y, Z] = H[Z] ≤ H[X,Z] +H[Y, Z]

which implies the result since Z depends on X and Y .

Lemma 1.17. Assuming that:

• X takes values in a finite set A

• Y is uniform on A

• H[X] = H[Y ]

Then X is uniform.

Proof. Let pa = P[X = a]. Then

H[X] =
∑
a∈A

pa log

Å
1

pa

ã
= |A|

∑
a∈A

pa log

Å
1

pa

ã
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The function x 7→ x log 1
x is concave on [0, 1]. So, by Jensen’s inequality this is at most

|A|(Eapa) log

Å
1

Eapa

ã
= log(|A|) = H[Y ].

Equality holds if and only if a 7→ pa is constant – i.e. X is uniform.

Corollary 1.18. Assuming that:

• X,Y random variables

• H[X,Y ] = H[X] +H[Y ]

Then X and Y are independent.

Proof. We go through the proof of Subadditivity and check when equality holds.

Suppose that X is uniform on A. Then

H[X | Y ] =
∑
y

P[Y = y]H[X | Y = y]

≤ H[X]

with equality if and only if H[X | Y = y] is uniform on A for all y (by Lemma 1.17), which implies
that X and Y are independent.

At the last stage of the proof we used

H[X | Y ] = H[X | Y,W ] = H[X |W ] ≤ H[X]

where W was uniform. So equality holds only if X and W are independent, which implies (since Y
depends on W ) that X and Y are indpendent.

Definition (Mutual information). Let X and Y be random variables. The mutual information
I[X : Y ] is

H[X] +H[Y ]−H[X,Y ] = H[X]−H[X | Y ]

= H[Y ]−H[Y | X]

Subadditivity is equivalent to the statement that I[X : Y ] ≥ 0 and Corollary 1.18 implies that I[X :
Y ] = 0 if and only if X and Y are independent.

Note that
H[X,Y ] = H[X] +H[Y ]− I[X : Y ].
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Definition (Conditional mutual information). Let X, Y and Z be random variables. The
conditional mutual information of X and Y given Z, denoted by I[X : Y |Z] is∑

z

P[Z = z]I[X | Z = z : Y | Z = z]

=
∑
z

P[Z = z](H[X | Z = z] +H[Y | Z = z]−H[X,Y | Z = z])

= H[X | Z] +H[Y | Z]−H[X,Y | Z]
= H[X,Z] +H[Y, Z]−H[X,Y, Z]−H[Z]

Submodularity is equivalent to the statement that I[X : Y | Z] ≥ 0.
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2 A special case of Sidorenko’s conjecture

Let G be a bipartite graph with vertex sets X and Y (finite) and density α (defined to be |E(G)|
|X||Y | ). Let

H be another (think of it as ‘small’) bipartite graph with vertex sets U and V and m edges.

Now let φ : U → X and ψ : V → Y be random functions. Say that (φ, ψ) is a homomorphism if
φ(x)φ(y) ∈ E(G) for every xy ∈ E(H).

Sidorenko conjectured that: for every G,H, we have

P[(φ, ψ) is a homomorphism] ≥ αm.

Not hard to prove when H is Kr,s. Also not hard to prove when H is K2,2 (use Cauchy Schwarz).

Theorem 2.1. Sidorenko’s conjecture is true if H is a path of length 3.

Proof. We want to show that if G is a bipartite graph of density α with vertex sets X,Y of size m and
n and we choose x1, x2 ∈ X, y1, y2 ∈ Y independently at random, then

P[x1y1, x2y2, x3y3 ∈ E(G)] ≥ α3.

It would be enough to let P be a P3 chosen uniformly at random and show that H[P ] ≥ log(α3m2n2).

Instead we shall define a different random variable taking values in the set of all P3s (and then apply
maximality).

To do this, let (X1, Y1) be a random edge of G (with X1,∈ X, Y1 ∈ Y ). Now let X2 be a random
neighbour of Y1 and let Y2 be a random neighbour of X2.

It will be enough to prove that

H[X1, Y1, X2, Y2] ≥ log(α3m2n2).

Lecture 4

We can choose X1Y1 in three equivalent ways:

(1) Pick an edge uniformly from all edges.

(2) Pick a vertex x with probability proportional to its degree d(x), and then pick a random neighbour
y of x.

(3) Same with x and y exchanged.

It follows that Y1 = y with probability d(y)
|E(G)| , so X2Y1 is uniform in E(G), so X2 = x′ with probability

d(x′)
|E(G)| , so X2Y2 is uniform in E(G).
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Therefore,

H[X1, Y1, X2, Y2] = H[X1] +H[Y1 | X1] +H[X2 | X1, Y1] +H[Y2 | X1, Y1, X2]

= H[X1] +H[Y1 | X1] +H[X2 | Y1] +H[Y2 | X2]

= H[X1] +H[X1, Y1]−H[X1] +H[X2, Y1]−H[Y1] +H[Y2, X2]−H[X2]

= 3H[UE(G)]−H[Y1]−H[X2]

≥ 3H[UE(G)]−H[UY ]−H[UX ]

= 3 log(αmn)− logm− log n

= log(α3m2n2)

So we are done my maximality.

Alternative finish (to avoid using log!):

Let X ′, Y ′ be uniform in X,Y and independent of each other and X1, Y1, X2, Y2. Then:

H[X1, Y2, X2, Y2, X
′, Y ′] = H[X1, Y1, X2, Y2] +H[UX ] +H[UY ]

≥ 3H[UE(G)]

So by maximality,
#P3s× |X| × |Y | ≥ |E(G)|3.
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3 Brégman’s Theorem

Definition (Permanent of a matrix). Let A be an n× n matrix over R. The permanent of A,
denoted per(A), is ∑

σ∈Sn

n∏
i=1

Aiσ(i),

i.e. “the determinant without the signs”.

Let G be a bipartite graph with vertex sets X,Y of size n. Given (x, y) ∈ XY , let

Axy =

®
1 xy ∈ E(G)

0 xy /∈ E(G)

ie A is the bipartite adjacency matrix of G.

Then per(A) is the number of perfect matchings in G.

Brégman’s theorem concerns how large per(A) can be if A is a 01-matrix and the sum of entres in the
i-th row is di.

Let G be a disjoint union of Kaiai
s for i = 1, . . . , k, with a1 + · · ·+ ak = n.

Then the number of perfect matchings in G is

k∏
i=1

ai!.

Theorem 3.1 (Bregman). Assuming that:

• G a bipartite graph with vertex sets X,Y of size n

Then the number of perfect matchings in G is at most∏
x∈X

(d(x)!)
1

d(x) .

Proof (Radhakrishnan). Each matching corresponds to a bijection σ : X → Y such that xσ(x) ∈ E(G)
for every x. Let σ be chosen uniformly from all such bijections.

H[σ] = H[σ(x1)] +H[σ(x2) | σ(x1)] + · · ·+H[σ(xn) | σ(x1), . . . , σ(xn−1)],

where x1, . . . , xn is some enumeration of X.
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Then

H[σ(x1)] ≤ log d(x1)

H[σ(x2) | σ(x1)] ≤ Eσ log d
σ
x1
(x2)

where
dσxi

(x2) = |N(x2) \ {σ(x1)}|.
In general,

H[σ(xi)]σ(x1), . . . , σ(xi−1) ≤ Eσ log d
σ
x1,...,xi−1

(xi),

where
dσx1,...,xi−1

(xi) = |N(xi) \ {σ(x1), . . . , σ(xi−1)}|.

Lecture 5
Key idea: we now regard x1, . . . , xn as a random enumeration of X and take the average.

For each x ∈ X, define the contribution of x to be

log(dσx1,...,xi−1
(xi))

where xi = x (note that this “contribution” is a random variable rather than a constant).

We shall now fix σ. Let the neighbours of x be y1, . . . , yk.

Then one of the yj will be σ(x), say yh. Note that dσx1,...,xi−1
(xi) (given that xi = x) is

d(x)− |{j : σ−1(yj) comes earlier than x = σ−1(yh)}|.

All positions of σ−1(yh) are equally likely, so the average contribution of x is
1

d(x)
(log d(x) + log(d(x)− 1) + · · ·+ log 1) =

1

d(x)
log(d(x)!).

By linearity of expectation,
H[σ] ≤

∑
x∈X

1

d(x)
log(d(x)!),

so the number of matchings is at most ∏
x∈X

(d(x)!)
1

d(x) .

14



Definition (1-factor). Let G be a graph with 2n vertices. A 1-factor in G is a collection of n
disjoint edges.

Theorem 3.2 (Kahn-Lovasz). Assuming that:

• G a graph with 2n vertices

Then the number of 1-factors in G is at most∏
x∈V (G)

(d(x)!)
1

2d(x) .

Proof (Alon, Friedman). Let M be the set of 1-factors of G, and let (M1,M2) be a uniform random
element of M2. For each M1,M2, the union M1 ∪M2 is a collection of disjoint edges and even cycles
that covers all the vertices of G.

Call such a union a cover of G by edges and even cycles.

If we are given such a cover, then the number of pairs (M1,M2) that could give rise to it is 2k, where
k is the number of even cycles.

Now let’s build a bipartite graph G2 out of G. G2 has two vertex sets (call them V1, V2), both copies
of V (G). Join x ∈ V1 to y ∈ V2 if and only if xy ∈ E(G).

For example:
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By Bregman, the number of perfect matchings in G2 is ≤
∏

x∈V (G)(d(x)!)
1

d(x) . Each matching gives a
permutation σ of V (G), such that xσ(x) ∈ E(G) for every x ∈ V (G).

Each such σ has a cycle decomposition, and each cycle gives a cycle in G. So σ gives a cover of V (G)
by isolated vertices, edges and cycles.

Given such a cover with k cycles, each edge can be directed in two ways, so the number of σ that give
rise to is is 2k, where k is the number of cycles.

So there is an injection from M2 to the set of matchings of G2, since every cover by edges and even
cycles is a cover by vertices, edges and cycles.

So
|M|2 ≤

∏
x∈V (G)

(d(x)!)
1

d(x) .
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4 Shearer’s lemma and applications

Notation. Given a random variable X = (X1, . . . , Xn) and A = {a1, . . . , ak} ⊂ [n] with
a1 < a2 < · · · < ak, write XA for the random variable (Xa1

, Xa2
, . . . , Xak

).

Lemma 4.1 (Shearer). Assuming that:

• X = (X1, . . . , Xn) a random variable

• A a family of subsets of [n] such that every i ∈ [n] belongs to at least r of the sets A ∈ A

Then
H[X1, . . . , Xn] ≤

1

r

∑
A∈A

H[XA].

Proof. For each a ∈ [n], write X<a for (X1, . . . , Xa−1).

For each A ∈ A, A = {a1, . . . , ak} with a1 < · · · < ak, we have

H[XA] = H[Xa1 ] +H[Xa2 | Xa1 ] + · · ·+H[Xak
| Xa1 , . . . , Xak

]

≥ H[Xa1
| X<a1

] +H[Xa2
| X<a2

] + · · ·+H[Xak
| X<ak

] (Lemma 1.15)

=
∑
a∈A

H[Xa | X<a]

Therefore, ∑
A∈A

H[XA] ≥
∑
A∈A

∑
a∈A

H[Xa | X<a]

≥ r

n∑
a=1

H[Xa | X<a]

= rH[X]

Lecture 6
Alternative version:

Lemma 4.2 (Shearer, expectation version). Assuming that:

• X = (X1, . . . , Xn) a random variable

• A ⊂ [n] a randomly chosen subset of [n], according to some probability distribution (don’t
need any independence conditions!)

• for each i ∈ [n], P[i ∈ A] ≥ µ
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Then
H[X] ≤ µ−1EAH[XA].

Proof. As before,
H[XA] ≥

∑
a∈A

H[Xa | X<a].

So

EAH[XA] ≥ EA

∑
a∈A

H[Xa | X<a]

≥ µ

n∑
a=1

H[Xa | X<a]

= µH[X]

Definition (PA). Let E ⊂ Zn and let A ⊂ [n]. Then we write PAE for the set of all u ∈ ZA

such that there exists v ∈ Z[n]\A such that [u, v] ∈ E, where [u, v] is u suitably intertwined with
v (i.e. u ∪ v as functions).

Corollary 4.3. Assuming that:

• E ⊂ Zn

• A a family of subsets of [n] such that every i ∈ [n] is contained at least r sets A ∈ A

Then
|E| ≤

∏
A∈A

|PAE| 1r .

Proof. Let X be a uniform random element of E. Then by Shearer,

H[X] ≤ 1

r

∑
A∈A

H[XA].

But XA tkaes values in PAE, so
H[XA] ≤ log |PAX,

so
log |E| ≤ 1

r

∑
A

log |PAE|.

If A = {[n] \ {i} : i = 1, . . . , n} we get

|E| ≤
n∏

i=1

|P[n]\{i}E|
1

n−1 .
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This case is the discrete Loomis-Whitney theorem.

Theorem 4.4. Assuming that:

• G a graph with m edges

Then G has at most (2m)
3
2

6 triangles.

Is this bound natural? Yes: if m =
(
n
2

)
, and we consider a complete graph on n vertices, then we get

approximately (2m)
2
3

6 triangles.

Proof. Let (X1, X2, X3) be a random ordered triangle (without loss of generality G has a triangle so
that this is possible).

Let t be the number of triangles in G. By Shearer,

log(6t) = H[X1, X2, X3] ≤
1

2
(H[X1, X2] +H[X1, X3] +H[X2, X3]).

Each edge H[Xi, Xj ] is supported in the set of edges G, given a direction, i.e.

1

2
(H[X1, X2] +H[X1, X3] +H[X2, X3]) ≤

3

2
· log(2m).

Definition. Let X be a set of size n and let G be a set of graphs with vertex set X. Then
G is ∆-intersecting (read as “triangle-intersecting”) if for all G1, G2 ∈ G, G1 ∩ G2 contains a
triangle.

Theorem 4.5. Assuming that:

• |V | = n

• G a ∆-intersecting family with vertex set V

Then G has size at most 2
(n
2

)
−2.

Proof. Let X be chosen uniformly at random from G. We write V (2) for the set of (unordered) pairs
of elements of V . Think of any G ∈ G as a function from V (2) to {0, 1}. So X = (Xe : e ∈ V (2)).

For each R ⊂ V , let GR be the graph KR ∪KV \R
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For each R, we shall look at the projection XGR
, which we can think of as taking values in the set

{G ∩GR : G ∈ G} =: GR.

Note that if G1, G2 ∈ G, R ⊂ [n], then G1 ∩ G2 ∩ GR 6= ∅, since G1 ∩ G2 contains a triangle, which
must intersect GR by Pigeonhole Principle.

Thus, GR is an intersecting family, so it has size at most 2|E(GR)|−1. By Shearer, expectation version,

H[X] ≤ 2ERH[XGR
] (since each e belongs to GR with probability 1/2)

≤ 2ER(|E(GR)| − 1)

= 2

Ç
1

2

Ç
m

2

å
− 1

å
=

Ç
n

2

å
− 2

Lecture 7

Definition (Edge-boundary). Let G be a graph and let A ⊂ V (G). The edge-boundary ∂A of
A is the set of edges xy such that y /∈ A.
If G = Zn or {0, 1}n and i ∈ [n], then the i-th boundary ∂iA is the set of edges xy ∈ ∂A such
that x− y = ±ei, i.e. ∂iA consists of deges pointing in direction i.

Theorem 4.6 (Edge-isoperimetric inequality in Zn). Assuming that:

• A ⊂ Zn a finite set

Then |∂A| ≥ 2n|A|n−1
n .
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Proof. By the discrete Loomis-Whitney inequality,

|A| ≤
n∏

i=1

|P[n]\{i}A|
1

n−1

=

(
n∏

i=1

|P[n]\{i}A|
1
n

) n
n−1

≤

(
1

n

n∑
i=1

|P[n]\{i}A|

) n
n−1

But |∂iA| ≥ 2|P[n]\{i}A| since each fibre contributes at least 2.

So

|A| ≤

(
1

2n

n∑
i=1

|∂iA|

) n
n−1

=

Å
1

2n
|∂A|
ã n

n−1

Theorem 4.7 (Edge-isoperimetric inequality in the cube). Assuming that:

• A ⊂ {0, 1}n (where we take the usual graph)

Then |∂A| ≥ |A|(n− log |A|).

Proof. Let X be a uniform random element of A and write X = (X1, . . . , Xn). Write X\i for
(X1, . . . , Xi−1, Xi+1, . . . , Xn). By Shearer,

H[X] ≤ 1

n− 1

r∑
i=1

H[X\i]

=
1

n− 1

n∑
i=1

H[X]−H[Xi | X\i]

Hence
n∑

i=1

H[Xi | X\i] ≤ H[X].

Note

H[Xi | X\i = u] =

{
1 |P−1

[n]\{i}(u)| = 2

0 |P−1
[n]\{i}(u)| = 1
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The number of points of the second kind is |∂iA|, so H[Xi | X\i] = 1− |∂iA|
|A| . So

H[X] ≥
n∑

i=1

Å
1− |∂iA|

|A|

ã
= n− |∂A|

|A|

Also, H[X] = log |A|. So we are done.

Definition (Lower shadow). Let A be a family of sets of size d. The lower shadow ∂A is
{B : |B| = d− 1,∃A ∈ A, B ⊂ A}.

Notation. Let h(x) = x log 1
x + (1− x) log 1

1−x (for x ∈ [0, 1]).

Theorem 4.8 (Kruskal-Katona). Assuming that:

• |A| =
(
t
d

)
= t(t−1)···(t−d−1)

d! for some real number t

Then |∂A| ≥
(

t
d−1

)
.

Proof. Let X = (X1, . . . , Xd) be a random ordering of the elements of a uniformly random A ∈ A.
Then

H[X] = log

Ç
d!

Ç
t

d

åå
.

Note that (X1, . . . , Xd−1) is an ordering of the elements of some B ∈ ∂A, so

H[X1, . . . , Xd−1] ≤ log ((d− 1)!|∂A|) .

So it’s enough to show

H[X1, . . . , Xd−1] ≥ log

Ç
(d− 1)!

Ç
t

d− 1

åå
.

Also,
H[X] = H[X1, . . . , Xd−1] +H[Xd | X1, . . . , Xd−1]

and
H[X] = H[X1] +H[X2 | X1] + · · ·+H[Xd | X1, . . . , Xd−1].

We would like an upper bound for H[Xd]X<d. Our strategy will be to obtain a lower bound for
H[Xk | X<k] in terms of H[Xk+1 | X<k+1]. We shall prove that

2H[Xk|X<k] ≥ 2H[Xk+1|X<k+1] + 1 ∀k.
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Let T be chosen independently of X1, . . . , Xk−1 with

T =

®
0 probability p
1 probability 1− p

(p will be chosen and optimised later).

Given X1, . . . , Xk−1, let

X∗ =

®
Xk+1 T = 0

Xk T = 1

Note that Xk and Xk+1 have the same distribution (given X1, . . . , Xk−1), so X∗ does as well. Then

H[Xk | X<k] = H[X∗ | X<k]

≥ H[X∗ | X≤k] (Submodularity)
= H[X∗, T | X≤k] (X≤k and X∗ determine T )
= H[T | X≤k] +H[X∗ | T,X≤k] (additivity)
= H[T ] + pH[Xk+1 | X1, . . . , Xk]

+ (1− p)H[Xk | X1, . . . , Xk]

= h(p) + ps

Lecture 8 where h(p) = p log 1
p + (1− p) log 1

1−p and s = H[Xk+1 | X1, . . . , Xk].

It turns out that this is maximised when p = 2s

2s+1 . Then we get

2s

2s + 1
(log(2s + 1)− log 2s) +

log(2s + 1)

2s + 1
+

s2s

2s + 1
= log(2s + 1).

This proves the claim.

Let r = 2H[Xd|X1,...,Xd−1]. Then

H[X] = H[X1] + · · ·+H[Xd | X1, . . . , Xd−1]

≥ log r + log(r + 1) + · · ·+ log(r + d− 1)

= log

Å
(r + d− 1)!

(r − 1)!

ã
= log

Ç
d!

Ç
r + d− 1

d

åå
Since H[X] = log

(
d!
(
t
d

))
, it follows that

r + d− 1 ≤ t, r ≤ t+ 1− d.

23



It follows that

H[X1, . . . , Xd−1] = log

Ç
d!

Ç
t

d

åå
− log r

≥ log

Å
d!

t!

d!(t− d)!(t+ 1− d)

ã
= log

Ç
(d− 1)!

Ç
t

d− 1

åå
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5 The union-closed conjecture

Definition (Union-closed). Let A be a (finite) family of sets. Say that A is union closed if for
any A,B ∈ A, we have A ∪B ∈ A.

Conjecture. If A is a non-empty union-closed family, then there exists x that belongs to at
least 1

2 |A| sets in A.

Theorem (Justin Gilmer). There exists c > 0 such that if A is a union-closed family, then
there exists x that belongs to at least c|A| of the sets in A.

Justin Gilmer’s constant was about 1
100 .

His method has a “natural barrier” of 3−
√
5

2 .

We will briefly and “informally” discuss this.

A reason for this is that if we weaken the property union-closed to “almost union-closed” (if we pick
two elements randomly, then with high probability the union is in the family), then 3−

√
5

2 is the right
bound.

Let A = [n](pn) ∪ [n](≥(2p−p2−o(1))n). With high probability, if A,B are random elements of [n](pn),
then |A ∪B| ≥ (2p− p2 − o(1))n.

If 1− (2p− p2 − o(1)) = p then almost all of A is [n](pn).

25



One of the roots of the quadratic 1− 3p+ p2 = 0 is p = 3−
√
5

2 .

If we want to prove Justin Gilmer’s Theorem, it is natural to let A,B be independent uniformly random
elements of A and to consider H[A ∪ B]. Since A is union-closed, A ∪ B ∈ A, so H[A ∪ B] ≤ log |A|.
Now we would like to get a lower bound for H[A ∪B] assuming that no x belongs to more than p|A|
sets in A.

h(xy) ≥ c(xh(y) + yh(x)), h(x2) ≥ 2cxh(x).

Lecture 9

Lemma 5.1. Assuming that:

• c > 0 is such that
h(xy) ≥ c(xh(y) + yh(x))

for every x, y ∈ [0, 1]

• A is a family of sets such that every element (of
⋃
A) belongs to fewer than p|A| members

of A

Then H[A ∪B] > c(1− p)(H[A] +H[B]).

Proof. Think of A,B as characteristic functions. Write A<k for (A1, . . . , Ak−1) etc. By the Chain rule
it is enough to prove for every k that

H[(A ∪B)k | (A ∪B)<k] > c(1− p)(H[Ak | A<k] +H[Bk | B<k]).

By Submodularity,
H[(A ∪B)k | (A ∪B)<k] ≥ H[(A ∪B)k | A<k, B<k].
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For each u, v ∈ {0, 1}k−1 write p(u) = P(Ak = 0 | A<k = u), q(v) = P(Bk = 0 | B<k = v).

Then
H[(A ∪B)k | A<k = u,B<k = v] = h(p(u)q(v))

which by hypothesis is at least
c(p(u)h(q(v)) + q(v)h(p(u))).

So
H[(A ∪B)k | (A ∪B)<k] ≥ c

∑
u,v

P(A<k = u)P(B<k = v) (p(u)h(q(v)) + q(v)h(p(u))) .

But ∑
u

P(A<k = u)P(Ak = 0 | A<k = u) = P(Ak = 0)

and ∑
v

P(B<k = v)h(q(v)) =
∑
v

P(B<k = v)H[Bk | B<k = v] = H[Bk | B<k].

Similarly for the other term, so the RHS equals

c(P(Ak = 0)H[Bk | B<k] + P(Bk = 0)H[Ak | A<k]),

which by hypothesis is greater than

c(1− p)(H[Ak | A<k] +H[Bk | B<k])

as required.

This shows that if A is union-closed, then c(1− p) ≤ 1
2 , so p ≥ 1− 1

2c . Non-trivial as long as c > 1
2 .

We shall obtain 1√
5−1

. We start by proving the diagonal case – i.e. when x = y.

Lemma 5.2 (Boppana). For every x ∈ [0, 1],

h(x2) ≥ φxh(x).

Proof. Write ψ for φ−1 =
√
5−1
2 . Then ψ2 = 1 − ψ, so h(ψ2) = h(1 − ψ) = h(ψ) and φψ = 1, so

h(ψ2) = φψh(ψ). Equality also when x = 0, 1.
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Toolkit:

ln 2h(x) = −x lnx− (1− x) ln(1− x)

ln 2h′(x) = − lnx− 1 + ln(1− x) + 1

= ln(1− x)− lnx

ln 2h′′(x) = − 1

x
− 1

1− x

ln 2h′′′(x) =
1

x2
− 1

(1− x)2

Let f(x) = h(x2)− φxh(x). Then

f ′(x) = 2xh′(x2)− φh(x)− φxh′(x)

f ′′(x) = 2h′(x2) + 4x2h′′(x2)− 2φh′(x)− φxh′′(x)

f ′′′(x) = 4xh′′(x2) + 8xh′′(x2) + 8x3h′′′(x2)− 3φh′′(x)− φxh′′′(x)

= 12xh′′(x2) + 8x3h′′′(x2)− 3φh′′(x)− φxh′′′(x)
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So

ln 2f ′′′(x) =
−12x

x2(1− x2)
+

8x3(1− 2x2)

x4(1− x2)2
+

3φ

x(1− x)
− φx(1− 2x)

x2(1− x)2

=
−12

x(1− x2)
+

8(1− 2x2)

x(1− x2)2
+

3φ

x(1− x)
− φ(1− 2x)

x(1− x)2

=
−12(1− x2) + 8(1− 2x2) + 3φ(1− x)(1 + x)2 − φ(1− 2x)(1 + x)2

x(1− x)2(1 + x)2

This is zero if and only if

−12 + 12x2 + 8− 16x2 + 3φ(1 + x− x2 − x3)− φ(1− 3x2 − 2x3) = 0

which simplifies to
−φx3 − 4x2 + 3φx− 4 + 2φ = 0.

Lecture 10 Since this is a cubic with negative leading coefficient and constant term, it has a negative root, so it
has at most two roots in (0, 1). It follows (using Rolle’s theorem) that f has at most five roots in [0, 1],
up to multiplicity.

But

f ′(x) = 2x(log(1− x2)− log x2) + φ(x log x+ (1− x) log(1− x))− φx(log(1− x)− log x).

So f ′(0) = 0, so f has a double root at 0.

We can also calculate (using ψ2 + ψ = 1):

f ′(ψ) = 2ψ(logψ − 2 logψ) + φ(ψ logψ + 2(1− ψ) logψ)− (2 logψ − logψ)

= −2ψ logψ + logψ + 2φ logψ − 2 logψ − logψ

= 2 logψ(−ψ + φ− 1)

= 2φ logψ(−ψ2 + 1− ψ)

= 0

So there’s a double root at ψ.

Also, note f(1) = 0.

So f is either non-negative on all of [0, 1] or non-positive on all of [0, 1].

If x is small,

f(x) = x2 log
1

x2
+ (1− x2) log

1

1− x2
− φx

Å
x log

1

x
+ (1− x) log

1

1− x

ã
= 2x2 log

1

x
− φx2 log

1

x
+O(x2)

so there exists x such that f(x) > 0.
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Lemma 5.3. The function f(x, y) = h(xy)
xh(y)+yh(x) is minimised on (0, 1)2 at a point where x = y.

Proof. We can extend f continuously to the boundary by setting f(x, y) = 1 whenever x or y is 0 or
1. To see this, note first that it’s valid if neither x nor y is 0.

If either x or y is small, then

h(xy) = −xy(log x+ log y) +O(xy)

xh(y) + yh(x) = −x(y log y +O(y))− y(x log x+O(x))

= h(x) +O(xy)

So it tends to 1 again.

One can check that f
(
1
2 ,

1
2

)
< 1, so f is minimised somewhere in (0, 1)2.

Let (x∗, y∗) be a minimum with f(x∗, y∗) = α.

Let g(x) = h(x)
x and note that

f(x, y) =
g(xy)

g(x) + g(y)
.

Also,
g(xy)− α(g(x) + g(y)) ≥ 0

with equality at (x∗, y∗). So the partial derivatives of LHS are both 0 at (x∗, y∗).

y∗g′(x∗y∗)− αg′(x∗) = 0

x∗g′(x∗y∗)− αg′(y∗) = 0

So x∗g′(x∗) = y∗g′(y∗). So it’s enough to prove that xg′(x) is an injection. g′(x) = h′(x)
x − h(x)

x2 , so

xg′(x) = h′(x)− h(x)

x

= log(1− x)− log x+
x log x+ (1− x) log(1− x)

x

=
log(1− x)

x
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Differentiating gives
−1

x(1− x)
− log(x− 1)

x2
=

−x− (1− x) log(1− x)

x2(1− x)
.

The numerator differentiates to −1+1+ log(1−x), which is negative everywhere. Also, it equals 0 at
0. So it has a constant sign.

Combining this with Lemma 5.2, we get that

h(xy) ≥ φ

2
(xh(y) + yh(x)).

This allows us to take 1− 1
φ = 1−

√
5−1
2 = 3−

√
5

2 .
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6 Entropy in additive combinatorics

We shall need two “simple” results from additive combinatorics due to Imre Ruzsa.

Definition (Sum set / difference set / etc). Let G be an abelian group and let A,B ⊂ G.
The sumset A+B is the set {x+ y : x ∈ A, y ∈ B}.
The difference set A−B is the set {x− y : x ∈ A, y ∈ B}.
We write 2A for A+A, 3A for A+A+A, etc.

Definition (Ruzsa distance). The Ruzsa distance d(A,B) is

|A−B|
|A| 12 |B| 12

.

Lemma 6.1 (Ruzsa triangle inequality). d(A,C) ≤ d(A,B) + d(B,C).

Proof. This is equivalent to the statement

|A− C||B| ≤ |A−B||B − C|.

For each x ∈ A− C, pick a(x) ∈ A, c(x) ∈ C such that a(x)− c(x) = x. Define a map

φ : (A− C)×B → (A−B,B − C)

(x, b) 7→ (a(x)− b, b− c(x))

Adding the coordinates of φ(x, b) gives x, so we can calculate a(x) (and c(x)) from φ(x, b), and hence
can calculate b. So φ is an injection.

Lemma 6.2 (Ruzsa covering lemma). Assuming that:

• G an abelian group

• A,B finite subsets of G

Then A can be covered by at most |A+B|
|B| translates of B −B.

Proof. Let {x1, . . . , xk} be a maximal subset of A such that the sets xi +B are disjoint.

Then if a ∈ A, there exists i such that (a+B) ∩ (xi +B) 6= ∅. Then a ∈ xi +B −B.

So A can be covered by k translates of B −B. But

|B|k = | {x1, . . . , xk}+B︸ ︷︷ ︸
⊂A+B

| ≤ |A+B|.
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Lecture 11
Let X, Y be discrete random variables taking values in an abelian group. What is X+Y when X and
Y are independent?

For each z, P(X + Y = z) =
∑

x+y=z P(X = x)P(Y = y). Writing px and qy for P(X = x) and
P(Y = y) respectively, this givesim

∑
x+y=z pxqy = p ∗ q(z) where p(x) = px and q(y) = zy.

So, sums of independent random variables ↔ convolutions.

Definition (Entropic Ruzsa distance). Let G be an abelian group and let X, Y be G-valued
random variables. The entropic Ruzsa distance d[X;Y ] is

H[X ′ − Y ′]− 1

2
H[X]− 1

2
H[Y ]

where X ′, Y ′ are independent copies of X and Y .

Lemma 6.3. Assuming that:

• A, B are finite subsets of G

• X, Y are uniformly distributed on A, B respectively

Then
d[X;Y ] ≤ log d(A,B).

Proof. Without loss of generality X, Y are indepent. Then

d[X;Y ] = H[X − Y ]− 1

2
H[X]− 1

2
H[Y ]

≤ log |A−B| − 1

2
logA− 1

2
logB

= log d(A,B)

Lemma 6.4. Assuming that:

• X, Y are G-valued random variables

Then
H[X + Y ] ≥ max{H[X],H[Y ]} − I[X : Y ].
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Proof.

H[X + Y ] ≥ H[X + Y | Y ] (by Subadditivity)
= H[X + Y, Y ]−H[Y ]

= H[X,Y ]−H[Y ]

= H[X] +H[Y ]−H[Y ]− I[X : Y ]

= H[X]− I[X : Y ]

By symmetry we also have
H[X + Y ] ≥ H[Y ]− I[X : Y ].

Corollary. Assuming that:

• X, Y are G-valued random variables

Then:
H[X − Y ] ≥ max{H[X],H[Y ]} − I[X : Y ].

Corollary 6.5. Assuming that:

• X, Y are G-valued random variables

Then
d[X;Y ] ≥ 0.

Proof. Without loss of generality X, Y are independent. Then I[X : Y ] = 0, so

H[X − Y ] ≥ max{H[X],H[Y ]}

≥ 1

2
(H[X] +H[Y ])

Lemma 6.6. Assuming that:

• X, Y are G-valued random variables

Then d[X;Y ] = 0 if and only if there is some (finite) subgroup H of G such that X and Y are
uniform on cosets of H.

Proof.

⇐ If X, Y are uniform on x+H, y +H, then X ′ − Y ′ is uniform on x− y +H, so

H[X ′ − Y ′] = H[X] = H[Y ].

So d[X;Y ] = 0.
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⇒ Suppose that X, Y are independent and H[X − Y ] = 1
2 (H[X] +H[Y ]).

From the first line of the proof of Lemma 6.4, it follows that H[X−Y | Y ] = H[X−Y ]. Therefore,
X − Y and Y are independent. So for every z ∈ A−B and every y1, y2 ∈ B,

P(X − Y = z | Y = y1) = P(X − Y = z | Y = y2)

where A = {x : px 6= 0}, B = {y : qy 6= 0}, i.e. for all y1, y2 ∈ B,

P(X = y1 + z) = P(X = y2 + z).

So px is constant on z +B.
In particular, A ⊃ z +B.
By symmetry, B ⊃ A− z.
So A = B + z for any z ∈ A−B. So for every x ∈ A, y ∈ B, A = B + x− y, so A− x = B − y. So
A− x is the same for every x ∈ A. Therefore, A− x = A−A for every x ∈ A.
It follows that

A−A+A−A = (A− x)− (A− x) = A−A.

So A−A is a subgroup. Also, A = A−A+ c, so A is a coset of A−A. B = A+ z, so B is also a
coset of A−A.

Recall Lemma 1.16: If Z = f(X) = g(Y ), then:

H[X,Y ] +H[Z] ≤ H[X] +H[Y ].

Lemma 6.7 (The entropic Ruzsa triangle inequality). Assuming that:

• X, Y , Z are G-valued random variables

Then
d[X;Z] ≤ d[X;Y ] + d[Y ;Z].

Proof. We must show that (assuming without loss of generality that X, Y and Z are independent)
that

H[X − Z]− 1

2
H[X]− 1

2
H[Z] ≤ H[X − Y ]− 1

2
H[X]− 1

2
H[Y ] +H[Y − Z]− 1

2
H[Y ]− 1

2
H[Z],

i.e. that
H[X − Z] +H[Y ] ≤ H[X − Y ] +H[Y − Z]. (∗)

Since X −Z is a function of (X −Y, Y −Z) and is also a function of (X,Z), we get using Lemma 1.16
that

H[X − Y, Y − Z,X,Z] +H[X − Z] ≤ H[X − Y, Y − Z] +H[X,Z].

This is the same as

H[X,Y, Z] +H[X − Z] ≤ H[X,Z] +H[X − Y, Y − Z].

By independence, cancelling common terms and Subadditivity, we get (∗).
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Lemma 6.8 (Submodularity for sums). Assuming that:

• X, Y , Z are independent G-valued random variables

Then
H[X + Y + Z] +H[Z] ≤ H[X + Z] +H[Y + Z].

Proof. X + Y + Z is a function of (X + Z, Y ) and also a function of (X,Y + Z). Therefore (using
Lemma 1.16),

H[X + Z, Y X, Y + Z] +H[X + Y + Z] ≤ H[X + Z, Y ] +H[X,Y + Z].

Hence
H[X,Y, Z] +H[X + Y + Z] ≤ H[X + Z] +H[Y ] +H[X] +H[Y + Z].

By independence and cancellation, we get the desired inequality.

Lecture 12

Lemma 6.9. Assuming that:

• G an abelian group

• X a G-valued random variable

Then
d[X;−X] ≤ 2d[X;X].

Proof. Let X1, X2, X3 be independent copies of X. Then

d[X;−X] = H[X1 +X2]−
1

2
H[X1]−

1

2
H[X2]

≤ H[X1 +X2 −X3]−H[X]

≤ H[X1 −X3] +H[X2 −X3]−H[X3]−H[X]

= 2d[X;X]

(as X1, X2, X3 are all copies of X).

Corollary 6.10. Assuming that:

• X and Y are G-valued random variables

Then
d[X;−Y ] ≤ 5d[X;Y ].
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Proof.
d[X;−Y ] ≤ d[X;Y ] + d[Y ;−Y ]

≤ d[X;Y ] + 2d[Y ;Y ]

≤ d[X;Y ] + 2(d[Y ;X] + d[X;Y ])

= 5d[X;Y ]

Conditional Distances

Definition (Conditional distance). Let X,Y, U, V be G-valued random variables (in fact, U and
V don’t have to be G-valued for the definition to make sense). Then the conditional distance is

d[X | U ;Y | V ] =
∑
u,v

P[U = u]P[V = v]d[X | U = u;Y | V = v].

The next definition is not completely standard.

Definition (Simultaneous conditional distance). Let X,Y, U be G-valued random variables.
The simultaneous conditional distance of X to Y given U is

d[X;Y ‖U ] =
∑
u

P[U = u]d[X | U = u;Y | U = u].

We say that X ′, Y ′ are conditionally independent trials of X, Y given U if:

• X ′ is distributed like X.

• Y ′ is distributed like Y .

• For each u ∈ U , X ′ | U = u is distributed like X | U = u,

• For each u ∈ U , Y ′ | U = u is distributed like Y | U = u.

• X ′ | U = u and Y ′ | U = u are independent.

Then
d[X;Y ‖U ] = H[X ′ − Y ′ | U ]− 1

2
H[X ′ | U ]− 1

2
H[Y ′ | U ]

(as can be seen directly from the formula).

Lemma 6.11 (The entropic BSG theorem). Assuming that:

• A and B are G-valued random variables

Then
d[A;B ‖ A+B] ≤ 3I[A : B] + 2H[A+B]−H[A]−H[B].
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Remark. The last few terms look like 2d[A;−B]. But they aren’t equal to it, because A and
B aren’t (necessarily) independent!

Proof.
d[A;B ‖ A+B] = H[A′ −B′ | A+B]− 1

2
H[A′ | A+B]− 1

2
H[B′ | A+B]

where A′, B′ are conditionally independent trials of A, B given A+B. Now calculate

H[A′ | A+B] = H[A | A+B]

= H[A,A+B]−H[A+B]

= H[A,B]−H[A+B]

= H[A] +H[B]− I[A : B]−H[A+B]

Similarly, H[B′ | A+B] is the same, so 1
2H[A′ | A+B] + 1

2H[B′ | A+B] is also the same.

H[A′ −B′ | A+B] ≤ H[A′ −B′].

Let (A1, B1) and (A2, B2) be conditionally independent trials of (A,B) given A+B. Then H[A′−B′] =
H[A1 −B2]. By Submodularity,

H[A1 −B2] ≤ H[A1 −B2, A] +H[A1 −B2, B1]−H[A1 −B2, A1, B1]

H[A1 −B2, A1] = H[A1, B2]

≤ H[A1] +H[B2]

= H[A] +H[B]

H[A1 −B2, B1] = H[A2 −B1, B1] (since A1 +B1 = A2 +B2)
= H[A2, B1]

≤ H[A] +H[B]

Finally,

H[A1 −B2, A1, B1] = H[A1, B1, A2, B2]

= H[A1, B1, A2, B2 | A+B] +H[A+B]

= 2H[A,B]A+B +H[A+B] (by conditional independence of (A1, B1) and (A2, B2))
= 2H[A,B]−H[A+B]

= 2H[A] + 2H[B]− 2I[A : B]−H[A+B]

Adding or subtracting as appropriate all these terms gives the required inequality.

Lecture 13
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7 A proof of Marton’s conjecture in Fn2

We shall prove the following theorem.

Theorem 7.1 (Green, Manners, Tao, Gowers). There is a polynomial p with the following
property: If n ∈ N and A ⊂ Fn

2 is such that |A + A| ≤ C|A|, then there is a subspace H ⊂ Fn
2

of size at most |A| such that A is contained in the union of at most p(C) translates of H.
(Equivalently, there exists K ⊂ Fn

2 , |K| ≤ p(C) such that A ⊂ K +H).

This is known as “Polynomial Freiman–Ruzsa”.

In fact, we shall prove the following statement.

Theorem 7.2 (Entropic Polynomial Freiman–Ruzsa). There exists an absolute constant α
satisfying the following: Let G = Fn

2 and let X,Y be G-valued random variables. Then there
exists a subsgroup H of G such that

d[X;UH ] + d[UH ;Y ] ≤ αd[X;Y ]

where UH is the uniform distribution on H.

Lemma 7.3. Assuming that:

• X a discrete random variable (and write px for P(X = x))

Then there exists x such that px ≥ 2−H[X].

Proof. If not, then
H[X] =

∑
x

px log

Å
1

px

ã
> H[X]

∑
x

px = H[X],

contradiction.

Proposition 7.4. Theorem 7.2 implies Theorem 7.1.

Proof. Let A ⊂ Fn
2 , |A+A| ≤ C|A|. Let X and Y be independent copies of UA. Then by Theorem 7.2,

there exists H (a subgroup) such that

d[X;UH ] + d[UH ;X] ≤ αd[X;Y ]

so
d[X;UH ] ≤ α

2
d[X;Y ].
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But

d[X;Y ] = H[UA − U ′
A]−H[UA]

= H[UA + U ′
A]−H[UA] (characteristic 2)

≤ log(C|A|)− log |A|
= logC

So d[X;UH ] ≤ α logC
2 . Therefore

H[X + UH ] ≤ 1

2
H[X] +

1

2
H[UH ] +

α logC

2

=
1

2
log |A|+ 1

2
log |H|+ α logC

2

Therefore, by Lemma 7.3, there exists z such that

P(X + UH = z) ≥ |A|− 1
2 |H|− 1

2C−α
2 .

But
P(X + UH = z) =

|A ∩ (z −H)|
|A||H|

=
|A ∩ (z +H)|

|A||H|
(using characteristic 2). So there exists z ∈ G such that

|A ∩ (z +H)| ≥ C−α
2 |A| 12 |H| 12 .

Let B = A ∩ (z +H). By the Ruzsa covering lemma, we can cover A by at most |A+B|
|B| translates of

B +B. But B ⊂ z +H so B +B ⊂ H +H = H, so A can be covered by at most |A+B|
|B| translates of

H.

But using B ⊂ A,
|A+B| ≤ |A+A| ≤ C|A|.

So
|A+B|
|B|

≤ C|A|
C−α

2 |A| 12 |H| 12
= C

α
2 +1 |A|

1
2

|H| 12
.

Since B is contained in z +H,
|H| ≥ C−α

2 |A| 12 |H| 12

so |H| ≥ C−α|A|, so

C
α
2 +1 |A|

1
2

|H| 12
≤ Cα+1.

If |H| ≤ |A| then we are done. Otherwise, since B ⊂ A,

|A| ≥ C−α
2 |A| 12 |H| 12

so |H| ≤ Cα|A|.

Pick a subgroup H ′ of H of size between |A|
2 and |A|. Then H is a union of at most 2Cα translates of

H ′, so A is a union of at most 2C2α+1 translates of H ′.
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Now we reduce further. We shall prove the following statement:

Theorem 7.5 (EPFR′). There is a constant η > 0 such that if X and Y are any two Fn
2 -valued

random variables with d[X;Y ] > 0, then there exists Fn
2 -valued random variables U and V such

that
d[U ;V ] + η(d[U ;X] + d[V ;Y ]) < d[X;Y ].

Lecture 14

Proposition 7.6. EPFR′(η) =⇒ EPFR(η−1).

Proof. By compactness we can find U , V such that

τX,Y [U ;V ] = d[U ;V ] + η(d[U ;X] + d[V ;Y ])

is minimised. If d[U ;V ] 6= 0 then by EPFR′(η) there exist Z, W such that τU,V [Z;W ] < d[U ;V ].

But then

τX,Y [Z;W ] = d[Z;W ] + η(d[Z;X] + d[W ;Y ])

≤ d[Z;W ] + η(d[Z;U ] + d[W ;V ]) + η(d[U ;X] + d[V ;Y ])

(by The entropic Ruzsa triangle inequality)
< d[U ;V ] + η(d[U ;X] + d[V ;Y ])

= τX,Y [U ;V ]

Contradiction.

It follows that d[U ;V ] = 0. So there exists H such that U and V are uniform on cosets of H, so

η(d[UH ;X] + d[UH ;Y ]) < d[X;Y ],

which gives us EPFR(η−1).

Definition. Write τX,Y [U |Z;V |W ] for∑
Z,W

P[Z = z]P[W = w]τX,Y [U |Z = z;V |W = w]

Definition. Write τX,Y [U ;V ‖Z] for∑
z

P[Z = z]τX,Y [U |z = z;V |Z = z]
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Remark. If we can prove EPFR′ for conditional random variables, then by averaging we get
it for some pair of random variables (e.g. of the form U |Z = z and V |W = w).

Lemma 7.7 (Fibring lemma). Assuming that:

• G and H are abelian groups

• φ : G→ H a homomorphism

• let X, Y be G-valued random variables.

Then

d[X;Y ] = d[φ(X);φ(Y )] + d[X|φ(X);Y |φ(Y )] + I[X − Y : φ(X), φ(Y ) | φ(X)− φ(Y )].

Proof.

d[X;Y ] = H[X − Y ]− 1

2
H[X]− 1

2
H[Y ]

= H[φ(X)− φ(Y )] +H[X − Y | φ(X)− φ(Y )]− 1

2
H[φ(X)]

− 1

2
H[X | φ(X)]− 1

2
H[φ(Y )]− 1

2
H[Y | φ(Y )]

= d[φ(X);φ(Y )] + d[X | φ(X);Y | φ(Y )] +H[X − Y | φ(X)− φ(Y )]

−H[X − Y | φ(X), φ(Y )]

But the last line of this expression equals

H[X−Y | φ(X)−φ(Y )]−H[X−Y | φ(X), φ(Y ), φ(X)−φ(Y )] = I[X−Y : φ(X), φ(Y ) | φ(X)−φ(Y )].

We shall be interested in the following special case.

Corollary 7.8. Assuming that:

• G = Fn
2 and X1, X2, X3, X4 are independent G-valued random variables

Then

d[(X1, X2); (X3, X4)] = d[X1;X3] + d[X2;X4]

= d[X1 +X2;X3 +X4] + d[X1 | X1 +X2;X3 | X3 +X4]

+ I[X1 +X3, X2 +X4 : X1 +X2, X3 +X4 | X1 +X2 +X3 +X4]︸ ︷︷ ︸
(∗)

Proof. Apply Lemma 7.7 with X = (X1, X2), Y = (X3, X4) and φ(x, y) = x+ y.
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We shall now set W = X1 +X2 +X3 +X4.

Recall that Lemma 6.11 says

d[X;Y ‖ X + Y ] ≤ 3I[X : Y ] + 2H[X + Y ]−H[X]−H[Y ].

Equivalently,
I[X : Y ] ≥ 1

3
(d[X;Y ‖ X + Y ] +H[X] +H[Y ]− 2H[X + Y ]).

Applying this to the information term (∗), we get that it is at least

1

3
(d[X1 +X3, X2 +X4;X1 +X2, X3 +X4 ‖ X2 +X3,W ] +H[X1 +X3, X2 +X4 |W ]

+H[X1 +X2, X3 +X4 |W ]− 2H[X2 +X3, X2 +X3 |W ])

which simplifies to

1

3
(d[X1 +X3, X2 +X4;X1 +X2, X3 +X4 ‖ X2 +X3,W ] +H[X1 +X3 |W ]

+H[X1 +X2 |W ]− 2H[X2 +X3 |W ])

Lecture 15 So Corollary 7.8 now gives us:

d[X1;X3] + d[X2;X4] ≥ d[X1 +X2;X3 +X4] + d[X1 | X1 +X2;X3 | X4]

1

3
(d[X1 +X2;X1 +X3 ‖ X2 +X3,W ]

+H[X1 +X2 |W ] +H[X1 +X3 |W ]−H[X2 +X3 |W ])

Now apply this to (X1, X2, X3, X4), (X1, X2, X4, X3) and (X1, X4, X3, X2) and add.

We look first at the entropy terms. We get

2H[X1 +X2 |W ] +H[X1 +X4 |W ] +H[X1 +X3 |W ] +H[X1 +X4 |W ] +H[X1 +X2 |W ]

− 2H[X1 +X2 |W ]− 2H[X2 +X4 |W ]− 2H[X1 +X2 |W ]

= 0

where we made heavy use of the observation that if i, j, k, l are some permutation of 1, 2, 3, 4, then

H[Xi +Xj |W ] = H[Xk +Xl |W ].

This also allowed use e.g. to replace

d[X1 +X2, X3 +X4;X1 +X3, X2 +X4 ‖ X2 +X3,W ]

by
d[X1 +X2;X1 +X3 ‖ X2 +X3,W ].

Therefore, we get the following inequality:
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Lemma 7.9.

2d[X1;X2] + 2d[X3;X4] + d[X1;X4] + d[X2;X3]

≥ 2d[X1 +X2;X3 +X4] + d[X1 +X4;X2 +X3]

+ 2d[X1 | X1 +X2;X3 | X3 +X4] + d[X1 | X1 +X4;X2 | X2 +X3]

+
1

3

Å
d[X1 +X2;X1 +X3 ‖ X2 +X3,W ] + d[X1 +X2;X1 +X4 ‖ X2 +X4,W ]

+ d[X1 +X4;X1 +X3 ‖ X3 +X4,W ]

ã
Proof. Above.

Now let X1, X2 be copies of X and Y1, Y2 copies of Y and apply Lemma 7.9 to (X1, X2, Y1, Y2) (all
independent), to get this.

Lemma 7.10. Assuming that:

• X1, X2, Y1, Y2 satisfy: X1 and X2 are copies of X, Y1 and Y2 are copies of Y , and all of
them are independent

Then

6d[X;Y ]

≥ 2d[X1 +X2;Y1 + Y2] + d[X1 + Y2;X2 + Y1]

+ 2d[X1 | X1 +X2;Y1 | Y1 + Y2] + d[X1 | X1 + Y1;X2 | X2 + Y2]

+
2

3
d[X1 +X2;X1 + Y1 ‖ X2 + Y1, X1 + Y2]

+
1

3
d[X1 + Y1;X1 + Y2 ‖ X1 +X2, Y1 + Y2]

OR? TODO: figure out which is correct

6d[X;Y ]

≥ 2d[X1 +X2;Y1 + Y2] + d[X1 + Y1;X2 + Y2]

+ 2d[X1 | X1 +X2;Y1 | Y1 + Y2] + d[X1 | X1 + Y1;X2 | X2 + Y2]

+
2

3
d[X1 +X2 | X1 + Y1;X2 + Y1 | X1 + Y2]

+
1

3
d[X1 + Y1 | X1 + Y2;X − 1 +X1 | Y1 + Y2]

Proof. Use above.
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Recall that we want (U, V ) such that

τX,Y [U ;V ] = d[U ;V ] + η(d[U ;X] + d[V ;Y ])

< d[X;Y ]

Lemma 7.10 gives us a collection of distances (some conditioned), at least one of which is at most
6
7d[X;Y ]. So it will be enough to show that for all of them we get

d[U ;X] + d[V ;Y ] ≤ Cd[X;Y ],

for some absolute constant C. Then we can take η < 1
7C .

Definition (C-relevant). Say that (U, V ) is C-relevant to (X,Y ) if

d[U ;X] + d[V ;Y ] ≤ Cd[X;Y ].

Lemma 7.11. (Y,X) is 2-relevant to (X,Y ).

Proof. d[Y ;X] + d[X;Y ] = 2d[X;Y ].

Lemma 7.12. Assuming that:

• U, V,X be independent Fn
2 -valued random variables

Then
d[U + V ;X] ≤ 1

2
(d[U ;X] + d[V ;X] + d[U ;V ]).

Proof.

d[U + V ;X] = H[U + V +X]− 1

2
H[U + V ]− 1

2
H[X]

= H[U + V +X]−H[U + V ] +
1

2
H[U + V ]− 1

2
H[X]

≤ 1

2
H[U +X]− 1

2
H[U ] +

1

2
H[V +X]− 1

2
H[V ] +

1

2
H[U + V ]− 1

2
H[X]

=
1

2
(d[U ;X] + d[V ;X] + d[U ;V ])

Corollary 7.13. Assuming that:

• (U, V ) is C-relevant to (X,Y )

• U1, U2, V1, V2 are independent copies of U, V

45



Then (U1 + U2, V1 + V2) is 2C-relevant to (X,Y ).

Proof.

d[U1 + U2;X] + d[V1 + V2;Y ]

≤ 1

2
(2d[U ;V ] + d[U ;U ] + 2d[V ;Y ] + d[V ;V ]) (by Lemma 7.12)

≤ 2(d[U ;X] + d[V ;Y ]) (by The entropic Ruzsa triangle inequality)
≤ 2Cd[X;Y ]

Corollary 7.14. (X1 +X2, Y1 + Y2) is 4-relevant to (Y,X).

Proof. (X,Y ) is 2-relevant to (Y,X), so by Corollary 7.13 we’re done.

Corollary. Assuming that:

• (U, V ) is C-relevant to (X,Y )

Then (U + V,U + V ) is (3C + 2)-relevant to (X,Y ).

Proof. By Lemma 7.12,

d[U + V ;X] + d[U + V ;Y ] ≤ 1

2

(
d[U ;X] + d[V ;X] + d[U ;Y ] + d[V ;Y ] + 2d[U ;V ]

)
≤ 1

2
(2d[U ;X] + 4d[U ;V ] + 2d[V ;Y ])

≤ 1

2
(6d[U ;X] + 6d[V ;Y ] + 4d[X;Y ])

Lecture 16

Corollary 7.15. Assuming that:

• (U, V ) is C-relevant to (X,Y )

Then (U + V,U + V ) is 2(C + 1)-relevant to (X,Y ).
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Proof.

d[U + V ;X] ≤ 1

2
(d[U ;X] + d[V ;X] + d[U ;V ])

≤ 1

2
(d[U ;X] + d[V ;Y ] + d[X;Y ] + d[U ;X] + d[X;Y ] + d[V ;Y ])

= d[U ;X] + d[V ;Y ] + d[X;Y ]

Similarly for d[U + V ;Y ].

Lemma 7.16. Assuming that:

• U, V,X are independent Fn
2 -valued random variables

Then
d[U | U + V ;X] ≤ 1

2
(d[U ;X] + d[V ;X] + d[U ;V ]).

Proof.

d[U | U + V ;X] ≤ H[U +X | U + V ]− 1

2
H[U | U + V ]− 1

2
H[X]

≤ H[U +X]− 1

2
H[U ]− 1

2
H[V ] +

1

2
H[U + V ]− 1

2
H[X]

But d[U | U + V ;X] = d[V | U + V ;X], so it’s also

≤ H[V +X]− 1

2
H[U ]− 1

2
H[V ] +

1

2
H[U + V ]− 1

2
H[X].

Averaging the two inequalities gives the result (as earlier).

Corollary 7.17. Assuming that:

• U, V are independent random variables

• (U, V ) is C-relevant to (X,Y )

Then

(i) (U1 | U1 + U2, V1 | V1 + V2) is 2C-relevant to (X,Y ).

(ii) (U1 | U1 + V1, U2 | U2 + V2) is 2(C + 1)-relevant to (X,Y ).

Proof. Use Lemma 7.16. Then as soon as it is used, we are in exactly the situation we were in when
bounding the relevance of (U1 + U2, V1 + V2) and (U1 + V1, U2 + V2).
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It remains to tackle the last two terms in Lemma 7.10. For the fifth term we need to bound

d[X1 +X2 | X2 + Y1, X1 + Y2;X] + d[X1 + Y1 | X2 + Y1, X1 + Y2;Y ].

But first term of this is at most (by Lemma 7.12)

1

2
(d[X1;X2 + Y1, X1 + Y2]X + d[X2 | X1 + Y1, X1 + Y2;X] + d[X1;X2 ‖ X2 + Y1, X1 + Y2]).

By The entropic Ruzsa triangle inequality and independence, this is at most

≤ d[X1 | X1 + Y2;X] + d[X2 | X2 + Y1;X]

= 2d[X | X + Y ;X]

Now we can use Lemma 7.16, and similarly for the other terms.

In this way, we get that the fifth and sixth terms have relevances bounded above by λC for an absolute
constant λ.
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