%! TEX root = EC.tex % vim: tw=50 % 12/02/2025 11AM \begin{proof} \cref{lemma:6.3} + induction gives $[n]^* \omega = n\omega$. $\char K \nmid n$ implies $[n]$ is separable. So $\#[n]^{-1} (Q) = \deg[n]$ for all but finitely many $Q \in E$. But $[n]$ is a group homomorphism, so $[n]^{-1}(Q) = \#E\tors[n]$ for all $Q \in E$. Putting these two statements together gives \[ \#E\tors[n] = \deg[n] \stackrel{\text{\cref{coro:5.9}}}{=} n^2 .\] Group theory (structure theorem) gives that \[ E\tors[n] \cong \Zbb / d_1 \Zbb \times \cdots \times \Zbb / d_t \Zbb \] for some $1 < d_1 \mid d_2 \mid \cdots \mid d_t \mid n$. Let $p$ be a prime with $p \mid d_1$. Then $E\tors[p] \cong (\Zbb / p\Zbb)^t$. But $\#E\tors[p] = p^2$, so $t = 2$. But $\#E\tors[p] = p^2$, so $t = 2$, i.e. $E\tors[n] \cong \Zbb / d_1 \Zbb \times \Zbb / d_2 \Zbb$. Since $d_1 \mid d_2 \mid n$ and $d_1 d_2 = n^2$, we get $d_1 = d_2 = n$. Thus $E\tors[n] \cong (\Zbb / n\Zbb)^2$. \end{proof} \begin{remark*} If $\char K = p$ then $[p]$ is inseparable. It can be shown that: \begin{align*} \text{either } E\tors[p^r] &\cong \Zbb / p^r \Zbb ~\forall r \ge 1 &&\text{``ordinary''} \text{or } E\tors[p] &= 0 &&\text{``supersingular''} \end{align*} Do not use this remark on \es{2}! \end{remark*} \newpage \section{Elliptic Curves over Finite Fields} \begin{fclemma}[] \label{lemma:7.1} Assuming: - $A$ an abelian group - $q : A \to \Zbb$ a positive definit quadratic form Then: \[ |\ub{q(x + y) - q(x) - q(y)}_{=\langle x, y\rangle}| \le 2\sqrt{q(x) q(y)} \qquad \forall x, y \in A .\] \end{fclemma} \begin{proof} We may assume $x \neq 0$, otherwise the result is clear. So $q(x) \neq 0$. Let $m, n \in \Zbb$. Then \begin{align*} 0 &\le q(mx + ny) \\ &= \half \langle mx + ny, mx + ny \rangle \\ &= m^2 q(x) + mn \langle x, y\rangle + n^2 q(y) \\ &= q(x) \left( m + \frac{\langle x, y\rangle}{2q(x)} n \right)^2 + \left( q(y) - \frac{\langle x, y\rangle^2}{4q(x)} \right) n^2 \end{align*} Take $m = -\langle x, y\rangle$, $n = 2q(x) \neq 0$ to deduce \[ q(y) - \frac{\langle x, y\rangle^2}{4q(x)} \ge 0 \] hence $\langle x, y\rangle^2 \le 4q(x)q(y)$ and hence \[ |\langle x, y\rangle| \le 2\sqrt{q(x)q(y)} .\] \end{proof} \begin{fcthm}[Hasse's Theorem] \label{thm:7.2} Assuming: - $E / \Fbb_q$ an \gls{ellc} Then: \[ |\#E(\Fbb_q) - (q + 1)| \le 2\sqrt{q} .\] \end{fcthm} \begin{proof} Recall $\Gal(\Fbb_{q^r} / \Fbb_q)$ is cyclic of order $r$ and generated by Frobenius $x \mapsto x^q$. Let $E$ have Weierstrass equation with coefficients $a_1, \ldots, a_6 \in \Fbb_q$ (so $a_i^q = a_i$). Define the Frobenius endomorphism \begin{align*} \phi : E &\to E \\ (x, y) &\mapsto (x^q, y^q) \end{align*} This is an \gls{isog} of degree $q$. Then \[ E(\Fbb_q) = \{P \in E \mid \phi(P) = P\} = \ker(1 - \phi) .\] \begin{align*} \phi^* \omega &= \phi^* \left( \frac{\dd x}{y} \right) \\ &= \frac{\dd (x^q)}{y^q} \\ &= \frac{qx^{q - 1} \dd x}{y^q} \\ &= 0 &&\text{($q \equiv 0 \pmod{p}$)} \end{align*} \cref{lemma:6.3} tells us that \[ (1 - \phi)^* \omega = \omega - \phi^*(\omega) = \omega \neq 0 .\] Hence $1 - \phi$ is separable. By \cref{thm:2.8} and the fact that $1 - \phi$ is a group homomorphism, we argue as in the proof of \cref{thm:6.5} that \[ \ub{\#\ker(1 - \phi)}_{= \#E(\Fbb_q)} = \deg(1 - \phi) .\] $\deg : \Hom(E, E) \to \Zbb$ is a positive definite \gls{qf} (\cref{thm:5.7}, and positive definiteness is obvious since non-constant morphisms have positive degree). \cref{lemma:7.1} gives \[ |\deg(1 - \phi) - 1 - \deg\phi| \le 2\sqrt{\deg\phi} .\] Hence \[ |\#E(\Fbb_q) - 1 - q| \le 2\sqrt{q} . \qedhere \] \end{proof} \begin{fcdefnstar}[] \glssymboldefn{isogip}% For $\phi, \psi \in \End(E) = \Hom(E, E)$, we put $\langle \phi, \psi\rangle = \deg(\phi + \psi) - \deg \phi - \deg \psi$ and $\trinternal(\phi) = \langle \phi, 1\rangle$. \end{fcdefnstar} \begin{fccoro}[] \label{coro:7.3} Assuming: - $E / \Fbb_q$ an \gls{ellc} - $\phi \in \End(E)$ the $q$-power Frobenius Then: $\#E(\Fbb_q) = q + 1 - \isogtr(\phi)$ and $|\isogtr(\phi)| \le 2\sqrt{q}$. \end{fccoro} \subsection{Zeta functions} For $K$ a number field, let \[ \zeta_K(s) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{1}{(N \mathfrak{a})^s} = \prod_{\substack{\mathfrak{p} \subset \mathcal{O}_K \\ \text{prime}}} \left( 1 - \frac{1}{(N \mathfrak{p})^s} \right)^{-1} .\] For $K$ a function field, i.e. $K = \Fbb_q(C)$ where $C / \Fbb_q$ is a smooth projective curve, \[ \zeta_K(s) = \prod_{x \in |C|} \left( 1 - \frac{1}{(Nx)^s} \right)^{-1} ,\] where \[ |C| = \{\text{closed points on $C$}\} \] (closed points are orbits for action of $\Gal(\ol{\Fbb_q} / \Fbb_q)$ on $C(\ol{\Fbb_q})$) and $Nx = q^{\deg x}$, $\deg x$ is the size of orbit. We have $\zeta_K(s) = F(q^{-s})$ for some $F \in \Qbb[[T]]$, \begin{align*} F(T) &= \prod_{x \in |C|} (1 - T^{\deg x})^{-1} \\ \log F(T) &= \sum_{x \in |C|} \sum_{m = 1}^\infty \frac{1}{m} T^{m \deg x} &&-\log(1 - x) = \sum_{m = 1}^\infty \frac{x^m}{m} \\ T \frac{\dd }{\dd T} (\log F(T)) &= \sum_{x \in |C|} \sum_{m = 1}^\infty \deg x T^{m \deg x} \\ &= \sum_{n = 1}^{\infty} \left( \sum_{\substack{x \in |C| \\ \deg x \mid n}} \deg x \right) T^n &&n = m \deg x \\ &= \sum_{n = 1}^{\infty} \#C(\Fbb_{q^n}) T^n \end{align*} Therefore \[ F(T) = \exp \left( \sum_{n = 1}^{\infty} \frac{\#C(\Fbb_{q^n})}{n} T^n \right) .\] \begin{fcdefnstar}[Zeta function] \glssymboldefn{zetafunction}% The zeta function $Z_C(T)$ of a smooth projective curve $C / \Fbb_q$ is defined by \[ Z_C(T) = \exp \left( \sum_{n = 1}^{\infty} \frac{\#C(\Fbb_{q^n})}{n} T^n \right) .\] \end{fcdefnstar}