%! TEX root = EC.tex % vim: tw=50 % 07/02/2025 11AM \begin{theorem}[] \label{thm:5.7} $\deg : \Hom(E_1, E_2) \to \Zbb$ is a \gls{qf}. \end{theorem} \noproof \begin{note*} We define $\deg(0) = 0$. \end{note*} For the proof we assume $\char K \neq 2, 3$. Write $E_2$: $y^2 = x^3 + ax + b$. Let $P, Q \in E_2$ with $P, Q, P + Q, P - Q \neq 0$. Let $x_1, \ldots, x_4$ be the $x$-coordinates of the $4$ points. \begin{fclemma}[] \label{lemma:5.8} There exists $W_0, W_1, W_2 \in \Zbb[a, b][x_1, x_2]$ of degree in $x_1$ and of degree $\le 2$ in $x_2$ such that \[ (1 : x_3 + x_4 : x_3 x_4) = (W_0 : W_1 : W_2) .\] \end{fclemma} \begin{proof} Two methods. \begin{enumerate}[(1)] \item Direct calculation: \begin{align*} W_0 &= (x_1 - x_2)^2 \\ W_1 &= \cdots \\ W_2 &= \cdots \end{align*} see formula sheet. \item Let $y = \lambda x + \nu$ be the line through $P$ and $Q$. \begin{align*} x^3 + ax + b - (\lambda x + \nu)^2 &= (x - x_1)(x - x_2)(x - x_3) \\ &= x^3 - s_1 x^2 + x_2 x - s_3 \end{align*} where $s_i$ is the $i$-th elementary symmetric polynomial in $x_1, x_2, x_3$. Comparing coefficients: \begin{align*} \lambda^2 &= s_1 \\ -2\lambda \nu &= s_2 - a \\ \nu^2 &= s_3 + b \end{align*} Eliminating $\lambda$ and $\nu$ gives \[ \ub{(s_2 - a)^2 - 4 s_1(s_3 + b) = 0}_{=F(x_1, x_2, x_3)} \] where $F$ has degree $\le 2$ in $x_i$. $x_3$ is a root of the quadratic \[ W(t) = F(x_1, x_2, t) .\] Repeating for the line through $P$ and $-Q$ shows that $x_4$ is the other root. Therefore \[ W_0(t - x_3)(t - x_4) = W_0 t^2 - W_1 t + W_2 ,\] hence \[ (1 : x_3 + x_4 : x_3 x_4) = (W_0 : W_1 : W_2) . \qedhere \] \end{enumerate} \end{proof} We show that if $\phi, \psi \in \Hom(E_1, E_2)$, then \[ \deg(\phi + \psi) + \deg(\phi - \psi) \le 2\deg(\phi)+ 2\deg(\psi) .\] We may assume $\phi, \psi, \phi + \psi, \phi - \psi \neq 0$ (otherwise trivial, or use $\deg[-1] = 1$, $\deg[2] = 4$). \begin{align*} \phi &: (x, y) \mapsto (\xi_1(x), \ldots) \\ \psi &: (x, y) \mapsto (\xi_2(x), \ldots) \\ \phi + \psi &: (x, y) \mapsto (\xi_3(x), \ldots) \\ \phi - \psi &: (x, y) \mapsto (\xi_4(x), \ldots) \end{align*} \cref{lemma:5.8} implies \[ (1 : \xi_3 + \xi_4 : \xi_3 \xi_4) = ((\xi_1 - \xi_2)^2 : \cdots) .\] Put $\xi_i = \frac{r_i}{s_i}$, $r_i, s_i \in K[t]$ coprime. \[ \ub{(s_3 s_4 : r_3 s_4 + r_4 s_4 : r_3 r_4)}_{\text{coprime}} = ((r_1 s_2 - r_2 s_1)^2 : \cdots) \tag{$*$} \label{lec7eq} .\] Therefore \begin{align*} \deg(\phi + \psi) + \deg(\phi - \psi) &= \max(\deg(r_3), \deg(s_3)) + \max(\deg(r_4), \deg(s_4)) \\ &= \max(\deg(s_3 s_4), \deg(r_3 s_4 + r_3 s_3), \deg(r_3 r_4)) \\ &\le 2\max(\deg(r_1), \deg(s_1)) + 2\max(\deg(r_2), \deg(s_2)) \\ &= 2\deg(\phi) + 2\deg(\psi) \label{lec7eq1} \tag{1} \end{align*} Now replace $\phi, \psi$ by $\phi + \psi, \phi - \psi$ to get \begin{align*} \deg(2\phi) + \deg(2\psi) &\le 2\deg(\phi + \psi) + 2\deg(\phi - \psi) \\ 4 \deg(\phi) + 4\deg(\psi) &\le 2\deg(\phi + \psi) + 2\deg(\phi - \psi) \\ 2 \deg(\phi) + 2\deg(\psi) &\le \deg(\phi + \psi) + \deg(\phi - \psi) \label{lec7eq2} \tag{2} \end{align*} \eqref{lec7eq1} and \eqref{lec7eq2} give that $\deg$ satisfies the parallelogram law, hence $\deg$ is a \gls{qf}. This proves \cref{thm:5.7}. \begin{fccoro}[] \label{coro:5.9} $\deg(n\phi) = n^2 \deg(\phi)$ for all $n \in \Zbb$, $\phi \in \Hom(E_1, E_2)$. In particular, $\deg[n] = n^2$. \end{fccoro} \begin{example} \label{eg:5.10} Let $E / K$ be an \gls{ellc}. Suppose $\char K \neq 2$. Let $0 \neq T \in E(K)[2]$. Without loss of generality $E$: $y^2 = x(x^2 + ax + b)$, $a, b \in K$, $b(a^2 - 4b) \neq 0$, and $T = (0, 0)$. If $P = (x, y)$ and $P' = P + T = (x', y')$ then \begin{align*} x' &= \left( \frac{y}{x} \right)^2 - a - x \\ &= \frac{x^2 + ax + b}{x} - a - x \\ &= \frac{b}{x} \\ y' &= \left( \frac{y}{x} \right) x' \\ &= -\frac{by}{x} \end{align*} Let \begin{align*} \xi &= x + x' + a = \left( \frac{y}{x} \right)^2 \\ \eta &= y + y' = \frac{y}{x} \left( x - \frac{b}{x} \right) \\ \eta^2 &= \left( \frac{y}{x} \right)^2 \left[ \left( x + \frac{b}{x} \right)^2 - 4b \right] \\ &= \xi [(\xi - a)^2 - 4b] \\ &= \xi(\xi^2 - 2a\xi + a^2 - 4b) \end{align*} Let $E'$: $y^2 = x(x^2 + a'x + b')$, where $a' = -2a$, $b' = a^2 - 4b$. There is an \gls{isog} \begin{align*} \phi : E &\to E' \\ (x, y) &\mapsto \left( \left( \frac{y}{x} \right)^2 : \frac{y(x^2 - b)}{x^2} : 1 \right) \\ &~~~~~ -2 ~~~~~~~~ -3 ~~~~~~~ 0 ~~~~~~~ \ord_{0_E}(\blank) \\ &~~~~~~~~~ 1 ~~~~~~~~~~~ 0 ~~~~~~~ 3 ~~~~~~~ +3 \\ 0_E &\mapsto (0 : 1 : 0) = 0_{E'} \end{align*} To compute the degree: $\left( \frac{y}{x} \right)^2 = \frac{x^2 + ax + b}{x}$ (coprime numerator and denominator as $b \neq 0$). \cref{lemma:5.4} gives $\deg \phi = 2$. We say $\phi$ is a $2$-\gls{isog}. \end{example} \newpage \section{The Invariant Differential} Let $C$ be an algebraic curve over $K = \ol{K}$. \begin{fcdefnstar}[Space of differentials] The \emph{space of differentials} $\Omega_C$ is the $K(C)$-vector space generated by $\dd f$ for $f \in K(C)$, subject to the relations \begin{enumerate}[(i)] \item $\dd(f + g) = \dd f + \dd g$ \item $\dd (fg) = f \dd g + g \dd f$ \item $\dd a = 0~~\forall a \in K$ \end{enumerate} \end{fcdefnstar} \textbf{Fact:} $\Omega_C$ is a $1$-dimensional $K(C)$-vector space.