%! TEX root = EC.tex % vim: tw=50 % 03/02/2025 11AM \item Surjectivity: Let $[D] \in \Pic^0(E)$. Then $D + (0_E)$ has degree $1$. Riemann Roch gives $\dim \mathcal{L}(D + (0_E)) = 1$. So there exists $0 \neq f \in \ol{K}(E)$ such that \[ \ub{\div(f) + D + (0_E)}_{\text{degree 1}} \ge 0 .\] So \[ \div(f) + D + (0_E) = (P) \] for some $P \in E$. Then $(P) - (0_E) \sim D$, so $\psi(P) = [D]$. \qedhere \end{enumerate} \end{proof} \subsubsection*{Formulae for $E$ in Weierstrass form} \[ E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \tag{$*$} \label{lec5eq} \] $0_E = (0 : 1 : 0)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/bc82870f25624072.png} \end{center} $P_1 \oplus P_2 = P_3$. $\ominus P_1 = (x_1, -(a_1 x + a_3) - y_1)$. Substituting $y = \lambda x + \nu$ into \eqref{lec5eq} and looking at coefficient of $x^2$ gives \[ \lambda^2 + a_1 \lambda - a_2 = x_1 + x_2 + \ub{x'}_{= x_3} .\] Therefore \begin{align*} x_3 &= \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2 \\ y_3 &= -(a_1 x' + a_3) - y' \\ &= -(a_1 x_3 + a_3) - (\lambda x_3 + \nu) \\ &= -(\lambda + a_1) x_3 - a_3 - \nu \end{align*} It remains to find formulae for $\lambda$ and $\nu$. \begin{enumerate}[{Case }I] \item $x_1 = x_2$, $P_1 \neq P_2$. Then $P_1 \oplus P_2 = 0_E$. \item $x_1 \neq x_2$. \begin{align*} \lambda &= \frac{y_2 - y_1}{x_2 - x_1} \\ \nu &= y_1 + \lambda x_1 \\ &= \frac{y_1 (x_2 - x_1) - x_1(y_2 - y_1)}{x_2 - x_1} \\ &= \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1} \end{align*} \item $P_1 = P_2$. \begin{align*} \lambda &= \cdots \\ \nu &= \cdots \end{align*} (Compute equation for tangent line.) \end{enumerate} \begin{fccoro}[] \label{coro:4.3} $E(K)$ is an abelian group. \end{fccoro} \begin{proof} It is a subgroup of $(E, \oplus)$. Identity $0_E \in E(K)$ by definition. Closure / inverses: see formulae above. Associative / commutative: inherited. \end{proof} \begin{fcthm}[] \label{thm:4.4} \glsref[ellc]{Elliptic curves} are group varieties, i.e. \cloze{$[-1] : E \to E$; $P \mapsto \ominus P$ and $\oplus : E \times E \to E$; $(P, Q) \mapsto P \oplus Q$ are morphisms of algebraic varieties.} \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Above formulae imply $[-1] : E \to E$ is a rational map, and hence a morphism (by \cref{remark:2.9}). \item Above formulae imply $\oplus : E \times E \to E$ is a rational map regular on \[ U = \{(P, Q) \in E \times E \st P, Q, P \oplus Q, P \ominus Q \neq 0_E\} .\] For $P \in E$, let $\tau_P : E \to E$; $X \mapsto X \oplus P$ ``translation by $P$''. $\tau_P$ is a rational map, and hence a morphism (by \cref{remark:2.9}). Take any $A, B \in E$. We factor $\oplus$ as \[ E \times E \stackrel{\tau_{\ominus A} \times \tau_{\ominus B}}{\longrightarrow} E \times E \stackrel{\oplus}{\to} E \stackrel{\tau_{A \oplus B}}{\longrightarrow} E .\] This shows $\oplus$ is regular on $(\tau_A \times \tau_B)(U)$ for all $A, B \in E$. Therefore $\oplus$ is regular on $E \times E$. \qedhere \end{enumerate} \end{proof} \subsubsection*{Statement of Results} The isomorphisms in (i), (ii), (iv) respect the relevant topologies. \begin{enumerate}[(i)] \item $K = \Cbb$, $E(\Cbb) = \Cbb / \Lambda \cong \Rbb / \Zbb \times \Rbb / \Zbb$ ($\Lambda$ is a lattice). \item $K = \Rbb$. Then \[ E(\Rbb) = \begin{cases} \Zbb / 2\Zbb \times \Rbb / \Zbb & \text{if $\Delta > 0$} \\ \Rbb / \Zbb & \text{if $\Delta < 0$} \end{cases} \] \item $K = \Fbb_q$ (field with $q$ elements). Then \[ |\#E(\Fbb_q) - (q + 1)| \le 2\sqrt{q} .\] (Hasse's Theorem). \item $[K : \Qbb_p] < \infty$, ring of integers $\mathcal{O}_K$. $E(K)$ has a subgroup of finite index which is isomorphic to $(\mathcal{O}_K, +)$. \item $[K : \Qbb] < \infty$. $E(K)$ is a finitely generated abelian group (Mordell-Weil Theorem). \end{enumerate} \subsubsection*{Brief remarks on the case $K = \Cbb$} Let \[ \Lambda = \{a\omega_1 + b\omega_2 : a, b \in \Zbb\} ,\] where $\omega_1, \omega_2$ a basis for $\Cbb$ as an $\Rbb$-vector space. Then \[ \{\text{meromorphic functions on the Riemann surface $\Cbb / \Lambda$}\} \leftrightarrow \{\text{$\Lambda$-invariant meromorphic functions on $\Cbb$}\} .\] The function field of $\Cbb / \Lambda$ is generated by \begin{align*} \wp(z) &= \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left( \frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right) \\ \wp'(z) &= -2\sum_{\lambda \in \Lambda} \frac{1}{(z - \lambda)^3} \end{align*} These satisfy \[ \wp'(z)^2 = 4\wp(z)^3 - g_2 \wp(z) - g_3 \] for some $g_2, g_3 \in \Cbb$ depending only on $\Lambda$. One shows $\Cbb / \Lambda = E(\Cbb)$ (isomorphism as groups and as Riemann surfaces) where $E$: $y^2 = 4x^3 - g_2 x - g_3$. \begin{fcthmstar}[Uniformisation Theorem] Every \gls{ellc} over $\Cbb$ arises this way (one proof uses modular forms). \end{fcthmstar} \begin{fcdefnstar}[] For $n \in \Zbb$, let $[n] : E \to E$ be defined by\cloze{ \[ P \mapsto \ub{P \oplus P \oplus \cdots \oplus P}_{\text{$n$ copies}} \] for $n \ge 0$, and $[-n] = [-1] \circ [n]$.} \end{fcdefnstar} \begin{fcdefnstar}[$n$-torsion subgroup] \glssymboldefn{tors}% The $n$-torsion subgroup of $E$ is \[ E[n] = \ker(E \stackrel{[n]}{\to} E) .\] \end{fcdefnstar} If $K = \Cbb$ then $E(\Cbb) \cong \Cbb / \Lambda$. Therefore \[ \begin{cases} E\tors[n] \cong (\Zbb / n\Zbb)^2 & (1) \\ \deg[n] = n^2 & (2) \end{cases} \] We'll show (2) holds over any field $K$, and (1) holds if $\char K \nmid n$. \begin{fclemma}[] \label{lemma:4.5} Assuming: - $\char K \neq 2$ - $E$: $y^2 = f(x) = (x - e_1)(x - e_2)(x - e_3)$, $e_1, e_2, e_3 \in \ol{K}$ Then: $E\tors[2] = \{0_E, (e_1, 0), (e_2, 0), (e_3, 0)\} \cong (\Zbb / 2\Zbb)^2$. \end{fclemma} \begin{proof} Let $P = (x, y) \in E$. Then \begin{align*} [2] P = 0 &\implies P = -P \\ &\implies (x, y) = (x, -y) \\ &\implies y = 0 \qedhere \end{align*} \end{proof}