%! TEX root = EC.tex % vim: tw=50 % 31/01/2025 11AM If $E'$ is singular then $E$ and $E'$ are rational, contradiction. So $E'$ is smooth. Then \cref{remark:2.9} implies that $\phi^{-1}$ is a morphism. So $\phi$ is an isomorphism. \end{proof} \begin{fcprop}[] \label{prop:3.2} Assuming: - $K$ is perfect - $E$, $E'$ are \glspl{ellc} over $K$ - $E, E'$ are in \gls{wform} Then: \begin{iffc} \lhs $E \cong E'$ over $K$ \rhs the equations are related by a change of variables \begin{align*} x &= u^2 x' + r \\ y &= u^3 y' + u^2 s x' + t \end{align*} where $u, r, s, t \in K$ with $u \neq 0$. \end{iffc} \end{fcprop} \begin{iffproof} \leftimpl Obvious. \rightimpl $\langle 1, x \rangle = \mathcal{L}(2.0_E) = \langle 1, x' \rangle$ hence $x = \lambda x' + r$ for some $\lambda, r \in K$ with $\lambda \neq 0$. $\langle 1, x, y \rangle = \mathcal{L}(3.0_E) = \langle 1, x', y' \rangle$ implies $y = \mu y' + \sigma x' + t$ for some $\mu, \sigma, t \in K$ with $\mu \neq 0$. Looking at coefficients of $x^3$ and $y^2$, we get $\lambda^3 = \mu^2$. So $\lambda = u^2$, $\mu = u^3$ for some $0 \neq u \in K$. Put $s = \frac{\sigma}{u^2}$. \end{iffproof} A \gls{wform} equation defines an \gls{ellc} if and only if it defines a smooth curve, which happens if and only if $\Delta(a_1, \ldots, a_6) \neq 0$, where $\Delta \in \Zbb[a_1, \ldots, a_6]$ is a certain polynomial. If $\char K \neq 2, 3$, we may reduce to the case $E : y^2 = x^3 + ax + b$, with discriminant $\Delta = -16(4a^3 + 27b^2)$. \begin{fccoro}[] \label{coro:3.3} Assuming: - $\char K \neq 2, 3$ and $K$ is perfect - \glspl{ellc} $E: y^2 = x^3 + ax + b$, $E' : y^2 = x^3 + a'x + b'$ Then: \begin{iffc} \lhs $E$ and $E'$ are isomorphic over $K$ \rhs $a' = u^4 a$, $b' = u^6 b$ for some $u \in K^*$. \end{iffc} \end{fccoro} \begin{proof} $E$ and $E'$ are related by a substitution as in \cref{prop:3.2} with $r = s = t = 0$. \end{proof} \begin{fcdefnstar}[$j$-invariant] \glsnoundefn{jinv}{$j$-invariant}{$j$-invariants}% The \emph{$j$-invariant} is \[ j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2} .\] \end{fcdefnstar} \begin{fccoro}[] \label{coro:3.4} Assuming: - $E \cong E'$ Then: $\jinv(E) = \jinv(E')$. Moreover, the converse holds if $K = \ol{K}$. \end{fccoro} \begin{proof} \begin{align*} E \cong E' &\iff \begin{cases} a' = u^4 a \\ b' = u^6 b \end{cases} \text{ for some $u \in K^*$} \\ &\implies (a^3 : b^2) = ((a')^3 : (b')^2) \\ &\iff \jinv(E) = \jinv(E') \end{align*} and the converse holds if $K = \ol{K}$ (to go backwards on the $\implies$ step, we only need to take some kind of $n$-th root). \end{proof} \newpage \section{The Group Law} Let $E \subset \Pbb^2$ be a smooth plane cubic, and $0_E \in E(K)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/e8d388fd8b2d4f04.png} \end{center} $E$ meets any line in 3 points counted with multiplicity. Let $S$ be the third point of intersection of $PQ$ with $E$, and $R$ be the third intersection point of $0_E S$ and $E$. Define $P \oplus Q = R$. If $PQ$ then take $T_P E$ instead of $PQ$ etc. This is called the ``chord and tangent process''. \begin{fcthm}[] \label{thm:4.1} $(E, \oplus)$ is an abelian group. \end{fcthm} \begin{note*} $E$ here means $E(\ol{K})$. As mentioned before, we only ever mean ``over $K$'' if it is explicitly mentioned (otherwise we are always working ``over $\ol{K}$''). \end{note*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $\oplus$ is clearly commutative. \item $0_E$ is the identity: \begin{center} \includegraphics[width=0.6\linewidth]{images/d2bf7594dc384838.png} \end{center} $0_E \oplus P = P$. \item Inverses: \begin{center} \includegraphics[width=0.6\linewidth]{images/675399dfae894dcf.png} \end{center} Let $S$ be the third point of intersection of $T_{0_E} E$ and $E$, and let $Q$ be the third point of intersection of $PS$ and $E$. Then $P \oplus Q = 0_E$. \item Associativity: much harder! We will develop a bit of theory first. \qedhere \end{enumerate} \end{proof} \begin{fcdefnstar}[Linearly equivalent] \glsadjdefn{linequiv}{linearly equivalent}{divisors}% $D_1, D_2 \in \Div(E)$ are \emph{linearly equivalent} if there exists $f \in \ol{K}(E)^*$ such that $\div(f) = D_1 - D_2$. Write $D_1 \sim D_2$ and $[D] = \{D' : D' \sim D\}$. \end{fcdefnstar} \begin{fcdefnstar}[] $\operatorname{Pic}(E) = \frac{\Div(E)}{\sim}$, $\Pic^0(E) = \frac{\Div^0(E)}{\sim}$. where $\Div^0(E) = \{D \in \Div E \st \deg D = 0\}$. \end{fcdefnstar} \begin{fcprop}[] \label{prop:4.2} Assuming: - we define \begin{align*} \psi : E &\to \Pic^0(E) \\ P &\mapsto [(P) - (0_E)] \end{align*} Thens:[(i)] - $\psi(P \oplus Q) = \psi(P) + \psi(Q)$. - $\psi$ is a bijection. \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \begin{align*} \div(l / m) &= (P) + \cancel{(S)} + (Q) - (0_E) - \cancel{S} - (R) \\ &= (P) + (Q) - (0_E) - (P \oplus Q) \end{align*} Hence $(P) + (Q) \sim (P \oplus Q) + (0_E)$. Therefore $(P \oplus Q) - (0_E) \sim (P) - (0_E) + (Q) - (0_E)$. So $\psi(P \oplus Q) = \psi(P) + \psi(Q)$. \item Injectivity: Suppose $\psi(P) = \psi(Q)$ with $P \neq Q$. Then there exists $f \in \ol{K}(E)^*$ such that $\div(f) = (P) - (Q)$, so $E \stackrel{f}{\to} \Pbb^1$ has degree 1, hence $E \cong \Pbb^1$, contradiction. Note: We now compute \[ \psi((P \oplus Q) \oplus R) = \psi(P) + \psi(Q) + \psi(R) = \psi(P \oplus (Q \oplus R)) \] hence $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$ for all $P, Q, R \in E$ (using injectivity). So $(E, \oplus)$ is associative.