%! TEX root = EC.tex % vim: tw=50 % 29/01/2025 11AM \begin{fcprop}[] \label{prop:2.7} Assuming: - $K = \ol{K}$, $\char K \neq 2$ - $C \subset \Pbb^2$ a smooth plane cubic - $P \in C$ a point of inflection Then: we may change coordinates such that \[ C : Y^2 Z = X(X - Z)(X - \lambda Z) \] for some $\lambda \neq 0, 1$ and $P = (0 : 1 : 0)$. \end{fcprop} \begin{proof} We change coordinates such that $P = (0 : 1 : 0)$, $T_p(C) = \{Z = 0\}$, and $C : \{F(X, Y, Z) = 0\} \subset \Pbb^2$. $P \in C$ part of inflection implies $F(t, 1, 0) = \text{const} t^3$, i.e. $F$ has no terms $X^2 Y$, $XY^2$ or $Y^3$. Therefore \[ F \in \langle Y^2 Z, XYZ, YZ^2, X^3, X^2 Z, XZ^2, Z^3 \rangle .\] The $Y^2 Z$ coefficient must be $\neq 0$ otherwise $P \in C$ is singular, and the coefficient of $X^3$ is $\neq 0$ otherwize $Z \mid F$. We are free to rescale $X$, $Y$, $Z$ and $F$. Then without loss of generality $C$ is defined by \[ Y^2 Z + a_1 XYZ + a_3 YZ^2 = X^3 + a_2 X^z Z + a_4 XZ^2 + a_6 Z^3 .\] Weierstrass form. Substituting $Y \leftarrow Y - \half a_1 X - \half a_3 Z$, we may suppose $a_1 = a_3 = 0$. Now \[ Y^2 Z = Z^3 f \left( \frac{X}{Z} \right) \] for some monic cubic polynomial $f$. $C$ is smooth, so $f$ has distinct roots. Without loss of generality say $0, 1, \lambda$. Then $C$ is given by \[ Y^2 Z = X(X - Z)(X - \lambda Z) . \qedhere \] \end{proof} \begin{remark*} It may be shown that the points of inflection on a smooth plane curve \[ C = \{F(X_1, X_2, X_3) = 0\} \subset \Pbb^2 \] are given by \[ F = \ub{\det \left( \frac{\partial^2 F}{\partial X_i \partial X_j} \right)}_{\text{Hessian}} = 0 ,\] \end{remark*} \subsection{The degree of a morphism} Let $\phi : C_1 \to C_2$ be a non-constant morphism of smooth projective curves. Then $\phi^* : K(C_2) \to K(C_1)$, $f \mapsto f \circ \phi$. \begin{fcdefnstar}[Degree of a morphism] $\deg\phi [K(C_1) : \phi^* K(C_2)]$. \end{fcdefnstar} \begin{fcdefnstar}[Separable morphism] \glsadjdefn{sep}{separable}{morphism}% $\phi$ is separable if $K(C_1) / \phi^* K(C_2)$ is a separable field extension. \end{fcdefnstar} \begin{fcdefnstar}[Ramification index] Suppose $P \in C_1$, $Q \in C_2$, $\phi : P \mapsto Q$. Let $t \in K(C_2)$ be a uniformiser at $Q$. The ramification index of $\phi$ at $P$ is \[ e_\phi(P) = \ord_P(\phi^* t) \] (always $\ge 1$, independent of choice of $t$). \end{fcdefnstar} \begin{fcthm}[] \label{thm:2.8} Assuming: - $\phi : C_1 \to C_2$ a non-constant morphism of smooth projective curves Then: \[ \sum_{P \in \phi^{-1} Q} e_\phi (P) = \deg \phi \qquad \forall Q \in C_2 .\] Moreover, if $\phi$ is \gls{sep} then $e_\phi(P) = 1$ for all but finitely many $P \in C_1$. In particular: \begin{enumerate}[(i)] \item $\phi$ is surjective (on $\ol{K}$-points) \item $\#\phi^{-1}(Q) \le \deg \phi$ \item If $\phi$ is \gls{sep} then equality holds in (ii) for all but finitely many $Q \in C_2$. \end{enumerate} \end{fcthm} \begin{remark} \label{remark:2.9} Let $C$ be an algebraic curve. A rational map is given $C \ratmap \Pbb^n$, $P \mapsto (f_0(P) : f_1(P) : \cdots : f_n(P))$ where $f_0, f_1, \ldots, f_n \in K(C)$ are not all zero. \end{remark} \textbf{Important Fact:} If $C$ is smooth then $\phi$ is a morphism. \newpage \section{Weierstrass Equations} In this section, we drop the assumption that $K = \ol{K}$, but we instead assume that $K$ is a perfect field. \begin{fcdefnstar}[Elliptic curve] \glsnoundefn{ellc}{elliptic curve}{elliptic curves}% An \emph{elliptic curve} $E / K$ is a smooth projective curve of genus $1$, defined over $K$ with a specified $K$-rational point $0_E \in E(K)$. \end{fcdefnstar} \begin{example*} $\{X^3 + pY^3 + p^2 Z^3 = 0\} \subset \Pbb^2$ is \emph{not} an \gls{ellc} over $\Qbb$, since it has no $\Qbb$-rational points. \end{example*} \glsnoundefn{wform}{Weierstrass form}{NA}% \glsnoundefn{weq}{Weierstrass equation}{Weierstrass equations}% \begin{fcthm}[] \label{thm:3.1} Assuming: - $E$ is an \gls{ellc} Then: $E$ is isomorphic over $K$ to a curve in Weierstrass form via an isomorphism taking $0_E$ to $(0 : 1 : 0)$. \end{fcthm} \begin{remark*} \cref{prop:2.7} treated the special case $E$ is a smooth plane cubic and $0_E$ is a point of inflection. \end{remark*} \textbf{Fact:} If $D \in \Div(E)$ is defined over $K$ (i.e. fixed by $\Gal(\ol{K} / K)$) then $\mathcal{L}(D)$ has a basis in $K(E)$ (not just $\ol{K}(E)$). \begin{proof}[Proof of \cref{thm:3.1}] $\mathcal{L}(2 . 0_E) \subset \mathcal{L}(3 . 0_E)$. Pick basis $1, x$ for $\mathcal{L}(2 . 0_E)$ and $1, x, y$ for $\mathcal{L}(3 . 0_E)$. Note: $\ord_{0_E}(x) = -2$, $\ord_{0_E}(y) = -3$. The 7 elements $1, x, y, x^2, xy, x^3, y^2$ in the 6-dimensional space $\mathcal{L}(6 . 0_E)$ must satisfy a dependence relation. Leaving out $x^3$ or $y^2$ gives a basis for $\mathcal{L}(6 . 0_E)$ since each term has a different order pole at $0_E$. Therefore the coefficients of $x^3$ and $y^2$ are non-zero. Rescaling $x$ and $y$ (if necessary) we get \[ y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \] for some $a_i \in K$. Let $E'$ be the curve defined by this equation (or rather its projective closure). There is a morphism \begin{align*} \phi : E &\to E' \subset \Pbb^2 \\ P &\mapsto (x(P) : y(P) : 1) = \left( \frac{x}{y}(P) : 1 : \frac{1}{y}(P) \right) \\ 0_E &\mapsto (0 : 1 : 0) \end{align*} Then \begin{align*} [K(E) : K(x)] &= \deg(E \stackrel{x}{\to} \Pbb^1) \\ &= \ord_{0_E} \left( \frac{1}{x} \right) \\ &= 2 [K(E) : K(y)] &= \deg(E \stackrel{y}{\to} \Pbb^1) \\ &= \ord_{0_E} \left( \frac{1}{y} \right) \\ &= 3 \end{align*} This gives us a diagram of field extensions: \begin{picmath} \begin{tikzcd} & K(E) \ar[ldd, no head] \ar[d, no head] \ar[rdd, no head] \\ & K(x, y) \ar[ld, no head] \ar[rd, no head] \\ K(x) & & K(y) \end{tikzcd} \end{picmath} By the Tower Law (since $2, 3$ are coprime), we get that $[K(E) : K(x, y)] = 1$. Hence $K(E) = K(x, y) = \phi^* K(E')$, so $\deg \phi = 1$, so $\phi$ is birational.