%! TEX root = EC.tex % vim: tw=50 % 19/03/2025 11AM % % Examples Class: % Friday 2nd May, 3:30PM, MR9 % Questions 1, 4, 8 -> CMS pigenhole by 5pm % Wednesday % % Revision Class: % Friday 23rd May, 3:30PM, MR3 TODO \end{example*} \begin{example*}[Lindemann] $E$: $y^2 = x^3 + 17x$. \[ \Im(\alpha_E) = \langle 17 \rangle \subset \Qbb^* / (\Qbb^*)^2 .\] $E'$: $y^2 = x^3 - 68x$. \[ \Im(\alpha_{E'}) \subset \langle -1, 2, 17 \rangle \subset \Qbb^* / (\Qbb^*)^2 .\] $b_1 = 2$, $w^2 = 2u^4 - 34v^4$. Replacing $w$ by $2w$ and dividing by $2$ gives \[ C:~ 2w^2 = u^4 - 17v^4 .\] \begin{notation*} $C(K) = \{(u, v, w) \in K^3 \setminus \{0\} \text{satisfying equation above}\} / \sim$, where $(u, v, w) \sim (\lambda u, \lambda v, \lambda^2 w)$ for all $\lambda \in K^*$. \end{notation*} $C(\Qbb_2) \neq \emptyset$ since $17 \in (\Zbb_2^*)^4$. $C(\Qbb_{17}) \neq \emptyset$ since $2 \in (\Zbb_{17}^*)^2$. $C(\Rbb) \neq \emptyset$ since $\sqrt{2} \in \Rbb$. Therefore $C(\Qbb_v) \neq \emptyset$ for all places $v$ of $\Qbb$. Suppose $(u, v, w) \in C(\Qbb)$. Without loss of generality say $u, v, w \in \Zbb$, $\gcd(u,, v) = 1$ and $w > 0$. If $17 \mid w$ then $17 \mid u$ and then $17 \mid v$, contradiction So if $p \mid w$ then $p \neq 17$ and $\left( \frac{17}{p} \right) = + 1$. Therefore $\left( \frac{p}{17} \right) = \left( \frac{17}{p} \right) = 1$ (using quadratic reciprocity). (If $p$ is odd, also $\left( \frac{2}{17} \right) = +1$). Therefore $\left( \frac{w}{17} \right) = +1$. But $2w^2 \equiv u^4 \pmod{17}$, so $2 \in (\Fbb_{17}^*)^4 = \{\pm 1, \pm 4\}$, contradiction. So $C(\Qbb) = \emptyset$, i.e. $C$ is a counterexample to the Hasse Principle. It represents a non-trivial element of $\TS(E / \Qbb)$. \end{example*} \subsection{Birch Swinnerton Dyer Conjecture} Let $E / \Qbb$ be an \gls{ellc}. \begin{fcdefnstar}[$L(E, s)$] Define \[ L(E, s) = \prod_p L_p(E, s) \] where \[ L_p(E, s) = \begin{cases} (1 - a_p p^{-s} + p^{1 - 2s})^{-1} & \text{if \gls{gred}} \\ (1 - p^{-s})^{-1} & \text{if split multiplicative reduction} \\ (1 + p^{-s})^{-1} & \text{if nonsplit multiplicative reduction} \\ 1 & \text{if additive reduction} \end{cases} \] where $\#\tilde{E}(\Fbb_p) = 1 + p - a_p$. \end{fcdefnstar} Hasse's Theorem implies $|a_p| \le 2\sqrt{p}$, which shows that $L(E, s)$ converges for $\Re(s) > \frac{3}{2}$. \begin{theorem*}[Wiles, Breuil, Conrad, Diamon, Taylor] $L(E, s)$ is the $L$-function of a weight $2$ modular form, and hence has an analytic continuation to all of $\Cbb$ (and a function equation relating $L(E, s) = L(E, 2 - s)$). \end{theorem*} \begin{conjecture*}[Weak Birch Swinnerton-Dyer Conjecture] $\ord_{s = 1} L(E, s) = \rank E(\Qbb)$. \end{conjecture*} ($= r$ say). \begin{conjecture*}[Strong Birch Swinnerton-Dyer Conjecture] $\ord_{s = 1} L(E, s) = \rank E(\Qbb)$, which we shall call $r$, and \[ \lim_{s \to 1} \frac{1}{(s - 1)^r} L(E, s) = \frac{\Omega_E \Reg E(\Qbb) |\TS(E / \Qbb)| \prod_p c_p(E)}{|E(\Qbb)_{\text{tors}}|^2} ,\] where \begin{itemize} \item $c_p$ is given by: \begin{align*} c_p(E) &= \text{Tamagawa number of $E / \Qbb_p$} \\ &= [E(\Qbb_p) : E_0(\Qbb_p)] \end{align*} \item If $E(\Qbb) / E(\Qbb)_{\text{tors}} = \langle P_1, P_2, \ldots, P_r \rangle$, then $\Reg E(\Qbb) = \det([P_i, P_j])_{i, j = 1, \ldots, r}$, where \[ [P, Q] = \canh(P + Q) - \canh(P) - \canh(Q) .\] \item $\Omega_E$ is given by: \[ \Omega_E = \int_{E(\Rbb)} \left| \frac{\dd x}{2y + a_1 x + a_3} \right| ,\] where $a_1, \ldots, a_6 \in \Zbb$ are coefficients of a globally \gls{min} \gls{weq} for $E / \Qbb$. \end{itemize} \end{conjecture*} \begin{theorem*}[Kolyvagin] If $\ord_{s = 1} L(E, s)$ is $0$ or $1$, then Weak Birch Swinnerton-Dyer holds, and also $|\TS(E / \Qbb)| < \infty$. \end{theorem*}