%! TEX root = EC.tex % vim: tw=50 % 17/03/2025 11AM \begin{proof} Let $Q \in \phi^{-1} P$. Then $\delta(P) \in \Hone(K, \mu_n)$ is represented by $\sigma \mapsto \sigma Q - Q \in E[\phi] \cong \mu_n$. \begin{align*} \ephi(\sigma Q - Q, T) &= \frac{g(\sigma Q - Q + X)}{g(X)} &&\substack{\text{for any $X \in E$} \\ \text{avoiding zeroes and poles of $g$}} \\ &= \frac{g(\sigma Q)}{g(Q)} &&\text{pick $X = Q$} \\ &= \frac{\sigma(g(Q))}{g(Q)} \\ &= \frac{\sigma \sqrt[n]{f(P)}}{\sqrt[n]f(P)} \end{align*} ($\phi^* f = g^n$, $f(P) = g(Q)^n$). But \begin{align*} \Hone(K, \mu_n) &\cong K^* / (K^*)^n \\ \left(\sigma \mapsto \frac{\sqrt[n]{x}}{\sqrt[n]{x}}\right) &\mapsfrom x \end{align*} Hence $\alpha(P) = f(P) \pmod{(K^*)^n}$. \end{proof} \subsection{Descent by 2-isogeny} \begin{align*} E:~ & y^2 = x(x^2 + ax + b) \\ E':~ & y^2 = x(x^2 + a'x + b') \end{align*} $b(a^2 - 4b) \neq 0$, $a' = -2a$, $b' = a^2 - 4b$. \begin{align*} \phi : E &\to E' \\ (x, y) &\mapsto \left( \left( \frac{y}{x} \right)^2, \frac{y(x^2 - b)}{x^2} \right) \\ \hat{\phi} : E' &\to E \\ (x, y) &\mapsto \left( \frac{1}{4} \left( \frac{y}{x} \right)^2, \frac{y(x^2 - b')}{8x^2} \right) \end{align*} $E[\phi] = \{0, T\}$, $T = (0, 0) \in E(K)$. $E'[\hat{\phi}] = \{0, T'\}$, $T' = (0, 0) \in E'(K)$. \begin{fcprop}[] \label{prop:16.2} There is a group homomorphism \begin{align*} \mathcloze{E'(K)} &\mathcloze[1]{\to K^* / (K^*)^2} \\ \mathcloze{(x, y)} &\mathcloze[2]{\mapsto \begin{cases} x \bmod (K^*)^2 & \text{if $x \neq 0$} \\ b' \bmod (K^*)^2 & \text{if $x = 0$} \end{cases}} \end{align*} with \cloze{kernel $\phi E(K)$}. \end{fcprop} \begin{proof} Either: Apply \cref{thm:16.1} with $f = x \in K(E')$, $g = \frac{y}{x} \in K(E)$. Or: direct calculation -- see \es{4}. \end{proof} \begin{align*} \alpha_E : \frac{E(K)}{\hat{\phi} E'(K)} &\injto K^* / (K^*)^2 \\ \alpha_{E'} : \frac{E'(K)}{\phi E(K)} &\injto K^* / (K^*)^2 \end{align*} \begin{fclemma}[] \label{lemma:16.3} $\mathcloze{2^{\rank E(K)}} = \mathcloze{\frac{|\Im \alpha_E| \cdot |\Im \alpha_{E'}|}{4}}$. \end{fclemma} \begin{proof} If $A \stackrel{f}{\to} B \stackrel{g}{\to} C$ are homomorphisms of abelian groups, then there is an exact sequence \begin{picmath} \begin{tikzcd} 0 \ar[r] & \ker(f) \ar[r] & \ker(gf) \ar[r, "f"] \ar[draw=none]{d}[name=A, anchor=center]{} & \ker(g) \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (A.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll} \\ & \coker(f) \ar[r, "g"] & \coker(gf) \ar[r] & \coker(g) \ar[r] & 0 \end{tikzcd} \end{picmath} Since $\hat{\phi} \phi = [2]_E$, we get an exact sequence \[ 0 \to \ub{E(K)[\phi]}_{\cong \Zbb / 2\Zbb} \to E(K)\tors[2] \stackrel{\phi}{\to} \ub{E'(K)[\phi']}_{\cong \Zbb / 2\Zbb} \to \ub{\frac{E'(K)}{\phi E(K)}}_{\cong \Im(\alpha_{E'})} \stackrel{\hat{\phi}}{\to} \frac{E(K)}{2E(K)} \to \ub{\frac{E(K)}{\hat{\phi} E'(K)}}_{\cong \Im(\alpha_E)} \to 0 .\] Therefore \[ \frac{|E(L) / 2E(K)|}{|E(K)\tors[2]|} = \frac{|\Im \alpha_E| \cdot |\Im \alpha_{E'}|}{4} \tag{1} \label{lec23eq1} .\] \gls{mwt}: $E(K) \cong \Delta \times \Zbb^r$, where $\Delta$ is a finite group and $r = \rank E(K)$. $\frac{E(K)}{2E(K)} \cong \frac{\Delta}{2\Delta} \times \left( \frac{\Zbb}{2\Zbb} \right)^r$. $E(K)\tors[2] \cong \Delta\tors[2]$. Since $\Delta$ is finite, we have that $\frac{\Delta}{2\Delta}$ and $\Delta\tors[2]$ have the same order, and therefore \[ \frac{|E(K) / 2E(K)|}{|E(K)\tors[2]|} = 2^r \tag{2} \label{lec23eq2} .\] So we are done, by using \eqref{lec23eq1} and \eqref{lec23eq2}. \end{proof} \begin{fclemma}[] \label{lemma:16.4} Assuming: - $K$ is a number field - $a, b \in \mathcal{O}_K$ Then: $\Im(\alpha_E) \subset K(S, 2)$, where $S = \{\mathfrak{p} \mid b\}$. \end{fclemma} \begin{proof} We must show that $x, y \in K$, $y^2 = x(x^2 + ax + b)$ and $v_{\mathfrak{p}}(b) = 0$ then $v_{\mathfrak{p}}(x) \equiv 0 \pmod{2}$. \textbf{Case $v_{\mathfrak{p}}(x) < 0$:} \cref{lemma:9.1} gives that for some $r \ge 1$, $v_{\mathfrak{p}}(x) = -2r$ and $v_{\mathfrak{p}}(y) = -3r$, so done. \textbf{Case $v_{\mathfrak{p}}(x) > 0$:} Then $v_{\mathfrak{p}}(x^2 + ax + b) = 0$. So $v_{\mathfrak{p}}(x) = v_{\mathfrak{p}}(y^2) = 2v_{\mathfrak{p}}(y)$. \end{proof} \begin{fclemma}[] \label{lemma:16.5} Assuming: - $b_1 b_2 = b$ Then: \begin{iffc} \lhs $b_1(K^*) \in \Im(\alpha_E)$ \rhs \[ w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4 \tag{$*$} \label{lec23eq3} \] is soluble for $u, v, w \in K$ not all zero. \end{iffc} \end{fclemma} \begin{proof} If $b_1 \in (K^*)^2$ or $b_2 \in (K^*)^2$ then both conditions are satisfied. So we may assume $b_1, b_2 \notin (K^*)^2$. Now note $b_1(K^*)^2 \in \Im(\alpha_E)$ if and only if there exists $(x, y) \in E(K)$ such that $x = b_1 t^2$ for some $t \in K^*$. This implies \[ y^2 = (b_1 t^2)(b_1^2 t^2 + a b_1 t^2 + b) \] hence \[ \left( \frac{y}{b_1 t} \right)^2 = b_1 t^4 + at^2 + \ub{\frac{b}{b_1}}_{= b_2} .\] So \eqref{lec23eq3} has solution $(u, v, w) = \left( t, 1, \frac{y}{b_1 t} \right)$. Conversely, if $(u,v, w)$ is a solution to \eqref{lec23eq3} then $uv \neq 0$ and $\left( b_1 \left( \frac{u}{v} \right)^2, b_1 \frac{uw}{v^3} \right) \in E(K)$. \end{proof} Now take $K = \Qbb$. \begin{example*} $E$: $y^2 = x^3 - x$ ($a = 0$, $b = -1$). $\Im(\alpha_E) = \langle -1 \rangle \subset \Qbb^* / (\Qbb^*)^2$. $E'$: $y^2 = x^3 + 4x$. $\Im(\alpha_{E'}) \subset \langle -1, 2 \rangle \subset \Qbb^* / (\Qbb^*)^2$. \begin{align*} b_1 &= -1 & w^2 &= - u^4 - 4v^4 \\ b_1 &= 2 & w^2 &= 2u^4 + 2v^4 \\ b_1 &= -2 & w^2 &= -2u^4 - 2v^4 \end{align*} The first and last lines are insoluble over $\Rbb$ (squares are non-negative). The middle line does have a solution: $(u, v, w) = (1, 1, 2)$. Therefore $\Im(\alpha_{E'}) = \langle 2 \rangle \subset \Qbb^* / (\Qbb^*)^2$. Hence $2^{\rank E(\Qbb)} = \frac{2 \cdot 2}{4} = 1$, so $\rank E(\Qbb) = 0$. So $1$ is \emph{not} a congruent number. \end{example*} \begin{example*} $E$: $y^2 = x^3 + px$, $p$ a prime which is 5 modulo 8. \begin{align*} b_1 &= -1 & w^2 &= -u^4 - pv^4 \end{align*} This is insoluble over $\Rbb$, hence $\Im(\alpha_E) = \langle p \rangle \subset \Qbb^* / (\Qbb^*)^2$. $E'$: $y^2 = x^3 - 4px$. $\Im(\alpha_{E'}) \subset \langle -1, 2, p \rangle \subset \Qbb^* / (\Qbb^*)^2$. Note: $\alpha_{E'}(T') = (-4p)(\Qbb^*)^2 = (-p)(\Qbb^*)^2$. \begin{align*} b_1 &= 2 & w^2 &= 2u^4 - 2pv^4 \\ b_1 &= 2 & w^2 &= -2u^4 + 2pv^4 \\ b_1 &= p & w^2 &= pu^4 - 4v^4 \end{align*} Suppose the first line is soluble. Then without loss of generality $u, v, w \in \Zbb$ with $\gcd(u, v) = 1$. If $p \mid u$, then $p \mid w$ and then $p \mid v$, contradiction. Therefore $w^2 \equiv 2u^4 \not\equiv 0 \pmod{p}$. So $\left( \frac{2}{p} \right) = + 1$, which contradicts $p \equiv 5 \pmod{8}$. Likewise the second line has no solution since $\left( \frac{-2}{p} \right) = -1$.