%! TEX root = EC.tex % vim: tw=50 % 10/03/2025 11AM \begin{remark*} For $K$ a number field and $P = (a_0 : a_1 : \cdots : a_n) \in \Pbb^n(K)$, define \[ H(P) = \prod_v \max_{0 \le i \le n} |a_i|_v \] where the product is over all places $v$, and the absolute values are normalised such that \[ \prod_v |\lambda|_v = 1 \qquad \forall \lambda \in K^* .\] Using this definition, all results in this section generalise when $\Qbb$ is replaced by a number field $K$. \end{remark*} \newpage \section{Dual isogenies and the Weil pairing} Let $K$ be a perfect field and $E / K$ an \gls{ellc}. \begin{fcprop}[] \label{prop:14.1} Assuming: - $\Phi \subset E(\ol{K})$ be a finite $\Gal(\ol{K} / K)$-stable subgroup Then: there exists an \gls{ellc} $E' / K$ and a separable \gls{isog} $\phi : E \to E'$ defined over $K$, with kernel $\Phi$, such that every \gls{isog} $\psi : E \to E''$ with $\Phi \subset \psi$ factors uniquely via $\phi$: \begin{picmath} \begin{tikzcd} E \ar[rr, "\psi"] \ar[rd, "\phi", swap] & & E'' \\ & E' \ar[ur, dashed, "\exists \text{ unique}", swap] \end{tikzcd} \end{picmath} \end{fcprop} \begin{proof} Omitted (see Silverman, Chapter III, Proposition 4.12). \end{proof} \begin{fcprop}[] \label{prop:4.12} Assuming: - $\phi : E \to E'$ an \gls{isog} of degree $n$ Then: there exists a unique \gls{isog} $\hat{\phi} : E' \to E$ such that $\hat{\phi} \phi = [n]$. \end{fcprop} \begin{proof} \textbf{Case $\phi$ is separable:} We have $|\ker \phi| = n$, hence $\ker \phi \subset E\tors[n]$. Apply \cref{prop:14.1} with $\psi = [n]$. \textbf{Case $\phi$ is inseparable:} omitted. \textbf{Uniqueness:} Suppose $\psi_1 \phi = \psi_2 \phi = [n]$. Then $(\psi_1 - \psi_2) \phi = 0$, so $\deg(\psi_1 - \psi_2) \deg \phi = 0$. Then $\deg(\psi_1 - \psi_2) = 0$, hence $\psi_1 = \psi_2$. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(i)] \item Write $E_1 \sim E_2$ to mean ``$E_1$ and $E_2$ are \gls{isogous}''. Then $\sim$ is an equivalence relation. \item $\deg[n] = n^2$ gives that $\deg\hat{\phi} = \deg\phi$ and $\hat{[n]} = [n]$. \item Note: \[ \phi \hat{\phi} \phi = \phi \circ [n]_E = [n]_{E'} \circ \phi \] Hence $\phi \hat{\phi} = [n]_{E'}$. In particular, $\hat{\hat{\phi}} = \phi$. \item If $E \stackrel{\psi}{\to} E' \stackrel{\phi}{\to} E''$ then $\hat{\phi \psi} = \hat{\psi} \hat{\phi}$. \item If $\phi \in \End(E)$ then \[ \phi^2 - (\tr\phi) \phi + \deg \phi = 0 .\] So \[ \ub{([\tr \phi] - \phi)\phi}_{= \hat{\phi}} = [\deg\phi] .\] Hence $[\tr\phi] = \phi + \hat{\phi}$. \end{enumerate} \end{remark*} \begin{fclemma}[] \label{lemma:14.3} Assuming: - $\phi, \psi \in \Hom(E, E')$ Then: $\widehat{\phi + \psi} = \hat{\phi} + \hat{\psi}$. \end{fclemma} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item If $E = E'$, then this follows from $\tr(\phi + \psi) = \tr(\phi) + \tr(\psi)$. \item In general, let $\alpha : E' \to E$ be any \gls{isog} (e.g. $\hat{\phi}$). Then: \begin{align*} \widehat{(\alpha \phi + \alpha \psi)} &= \widehat{\alpha \phi} + \widehat{\alpha \psi} \\ \widehat{(\phi + \psi)} \hat{\alpha} &= (\hat{\phi} + \hat{\psi}) \hat{\alpha} \end{align*} Hence the result follows. \qedhere \end{enumerate} \end{proof} \begin{remark*} In Silverman's book he proves \cref{lemma:14.3}first, and uses this to show $\deg : \Hom(E, E') \to \Zbb$ is a \gls{qf}. \end{remark*} \begin{notation*} \begin{align*} \summ : \Div(E) &\to E \\ \ub{\sum n_p (P)}_{\text{formal sum}} &\mapsto \ub{\sum n_P(P)}_{add using group law} \end{align*} \end{notation*} Recall \begin{align*} E &\congto \Pic^0(E) \\ P &\mapsto [(P) - (0)] \end{align*} Therefore $\summ D \mapsto [D]$ for all $D \in \Div^0(E)$. We deduce: \begin{fclemma}[] \label{lemma:14.4} Assuming: - $D \in \Div(E)$ Then: \begin{iffc} \lhs $D \sim 0$ \rhs $\deg D = 0$ and $\summ D = 0_E$. \end{iffc} \end{fclemma} We will now discuss Weil pairing. Let $\phi : E \to E'$ be an \gls{isog} of degree $n$, with Dual \gls{isog} $\hat{\phi} : E' \to E$. Assume $\char K \nmid n$ (hence $\phi$, $\ol{\phi}$ separable). We define the Weil pairing \[ e_\phi : E[\phi] \times E'[\hat{\phi}] \to \mu_n .\] Let $T \in E'[\phi]$. Then $nT = 0$, so there exists $f \in \ol{K}(E')^*$ such that \[ \div(f) = n(T) - n(0) .\] Pick $T_0 \in E(\ol{K})$ with $\phi(T_0) = T$. Then \[ \phi^*(T) - \phi^*(0) =\sum_{P \in E[\phi]} (P + T_0) - \sum_{P \in E[\phi]} (P) \] has sum \[ nT_0 = \hat{\phi} \phi T_0 = \hat{\phi} T = 0 .\] So there exists $g \in \ol{K}(E)^*$ such that \[ \div(g) = \phi^*(T) - \phi^*(0) .\] Now \begin{align*} \div(\phi^* f) &= \phi^* (\div f) \\ &= n(\phi^* (T) - \phi^*(0)) \\ &= \div(g^n) \end{align*} Therefore $\phi^* f = cg^n$ for some $c \in \ol{K}^*$. Rescaling $f$, we can say without loss of generality $c = 1$, i.e. $\phi^* f = g^n$. For $S \in E[\phi]$ we get $\tau_S^*(\div g) = (\div g)$ so $\tau_S^* g = \zeta g$ for some $\zeta \in \ol{K}^*$, i.e. $\zeta = \frac{g(X + S)}{g(X)}$ is independent of choice of $X \in E(\ol{K})$. Now \[ \zeta^n = \frac{g(X + S)^n}{g(X)^n} = \frac{f(\phi(X + S))}{f(\phi(X))} = 1 \] since $S \in E[\phi]$. Hence $\zeta \in \mu_n$. \glssymboldefn{ephi}% We define \[ e_\phi(S, T) = \frac{g(X + S)}{g(X)} .\] \begin{fcprop}[] \label{prop:14.5} $\ephi$ is \cloze{bilinear and non-degenerate.} \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Linearity in first argument: \begin{align*} \ephi(S_1 + S_2, T) &= \frac{g(X + S_1 + S_2)}{g(X + S_2)} \frac{g(X + S_2)}{g(X)} \\ &= \ephi(S, T) \ephi(S_2, T) \end{align*}