%! TEX root = EC.tex % vim: tw=50 % 27/01/2025 11AM \begin{proof} Without loss of generality $K = \ol{K}$. By a change of coordinates, we may assume \[ y^2 = x(x - 1)(x - \lambda) \] for some $\lambda \in K \setminus \{0, 1\}$. Suppose $(x, y) \in E(K(t))$. Put $x = \frac{u}{v}$, where $u, v \in K[t]$ are coprime. Then $w^2 = uv(u - v)(u - \lambda v)$ for some $w \in K[t]$. Unique factorisation in $K[t]$ gives that $u, v, u - v, u - \lambda v$ are squares. Hence by \cref{lemma:1.4}, $u, v \in K$, so $x \in K$, so $y \in K$. \end{proof} \newpage \section{Some Remarks on Plane Curves} Work over $K = \ol{K}$. \begin{fcdefn}[Rational plane affine curve] \label{defn:2.1} \glsadjdefn{ratc}{rational}{plane affine curve}% A plane affine curve $C = \{f(x, y) = 0\} \subset \Abb^2$ is \emph{rational} if it has a rational parametrisation, i.e. $\exists \phi(t), \psi(t) \in K(t)$ such that: \begin{enumerate}[(i)] \item $\Abb^1 \to \Abb^2$, $t \mapsto (\phi(t), \psi(t))$ is injective on $\Abb^1 \setminus \{\text{finite set}\}$. \item $f(\phi(t), \psi(t)) = 0$. \end{enumerate} \end{fcdefn} \begin{example} \label{eg:2.2} \phantom{} \begin{enumerate}[(a)] \item Any (non-singular) plane conic is \gls{ratc}. \begin{center} \includegraphics[width=0.6\linewidth]{images/68a70d5ef3d74904.png} \end{center} Substitute $y = t(x + 1)$. We get $x^2 + t^2(x + 1)^2 = 1$, hence $(x + 1)((x - 1) + t^2(x + 1)) = 0$, hence $x = -1$ or $x = \frac{1 - t^2}{1 + t^2}$. Therefore this has a \gls{ratc} parametrisation \[ (x, y) = \left( \frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2} \right) .\] \item Any singular plane cubic is \gls{ratc} \begin{center} \includegraphics[width=0.6\linewidth]{images/a21320b0be3c4dda.png} \end{center} \gls{ratc} parametrisation $(x, y) = (t^2, t^3)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/ad0b793066dd4b2b.png} \end{center} \gls{ratc} parametrisation: $(x, y) = (exercise, exercise)$. \item \cref{coro:1.6} shows that \glspl{tellc} are \emph{not} \gls{ratc}. \end{enumerate} \end{example} \begin{remark} \label{remark:2.3} The genus $g(C) \in \Zbb_{\ge 0}$ is an invariant of a smooth projective curve $C$. \begin{itemize} \item If $K = \Cbb$ then $g(C) = \text{genus of Riemann surface}$. \item A smooth plane curve $C \subset \Pbb^2$ of degree $d$ has genus $g(C) = \frac{(d - 1)(d - 2)}{2}$. \end{itemize} \end{remark} \begin{fcprop} \label{prop:2.4} Assuming: - $K = \ol{K}$ - $C$ a smooth projective curve Then: \begin{enumerate}[(i)] \item $C$ is rational (see \cref{defn:2.1}) if and only if $g(C) = 0$. \item $C$ is an \gls{tellc} (see \cref{defn:1.5}) if and only if $g(C) = 1$. \end{enumerate} \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Omitted. \item $\Rightarrow$: Check $C$ a smooth plane curve (exercise). Then use \cref{remark:2.3}. $\Leftarrow$: See later. \end{enumerate} \end{proof} \subsubsection*{Order of vanishing} $C$ algebraic curve, function field $K(C)$, $P \in C$ smooth point. We write $\ord_p(f)$ for the order of vanishing of $f \in K(C)^\times$ at $P$ (negative of $f$ has a pole). \textbf{Fact:} $\ord_p : K(C)^\times \to \Zbb$ is a discrete valuation, i.e. $\ord_p(f_1 f_2) = \ord_p(f_1) + \ord_p(f_2)$ and $\ord_p(f_1 + f_2) \ge \min(\ord_p(f_1), \ord_p(f_2))$. \begin{definition*}[Uniformiser] $t \in K(C)^\times$ is a uniformiser at $P$ if $\ord_p(t) = 1$. \end{definition*} \begin{example} \label{eg:2.5} $C = \{g = 0\} \subset \Abb^2$, $g \in K[x, y]$ irreducible. $K(C) = \Frac \frac{K[x, y]}{(g)}$. \[ g = g_0 + g_1(x, y) + g_2(x, y) + \cdots \] where $g_i$ are homogeneous of degree $i$. Suppose $P = (0, 0) \in C$ is a smooth point, i.e. $g_0 = 0$, $g_1(x, y) = \alpha x + \beta y$ with $\alpha, \beta$ \emph{not} both zero. \begin{center} \includegraphics[width=0.6\linewidth]{images/8c83429a86804baf.png} \end{center} \textbf{Fact:} $\gamma x + \delta y \in K(C)$ is a uniformiser at $P$ if and only if $\alpha \delta - \beta \gamma \neq 0$. \end{example} \begin{example} \label{eg:2.6} \[ \{y^2 = x(x - 1)(x - \lambda)\} \subset \Abb^2 \] where $\lambda \neq 0, 1$. Projective closure ($x = \frac{X}{Z}$, $y = \frac{Y}{Z}$): \[ \{Y^2 Z = X(X - Z)(X - \lambda Z)\} \subset \Pbb^2 .\] Let $P = (0 : 1 : 0)$. \textbf{Aim:} Compute $\ord_p(x)$ and $\ord_p(y)$. Put $w = \frac{Z}{Y}$, $t = \frac{X}{Y}$. So \[ w = t(t - w)(t - \lambda w) \tag{$*$} \label{eg:2.6_eq} \] Now $P$is the point $(t, w) = (0, 0)$. This is a smooth point with \[ \ord_p(t) = \ord_p(t - w) = \ord_p(t - \lambda w) = 1 .\] \eqref{eg:2.6_eq} implies $\ord_p(w) = 3$. Therefore $\ord_p(x) = \ord_p(t / w) =1 - 3 = -2$ and $\ord_p(y) = \ord_p(1 / w) = -3$. \end{example} \subsubsection*{Riemann Roch Spaces} Let $C$ be a smooth projective curve. \begin{fcdefnstar}[Divisor] A \emph{divisor} is a formal sum of points on $C$, say \[ D = \sum_{P \in C} n_p P \] where $n_p \in \Zbb$ and $n_p = 0$ for all but finitely many $P \in C$. We write $\deg D = \sum n_P$. We say $D$ is effective (written $D \ge 0$) if $n_P \ge 0$ for all $P$. \end{fcdefnstar} \glssymboldefn{div}% If $f \in K(C)^\times$, then $\div(f) = \sum_{P \in C} \ord_p(f) P$. The Riemann Roch space of $D \in \Div(C)$ is \[ \mathcal{L}(D) = \{f \in K(C)^\times \st \div(f) + D \ge 0\} \cup \{0\} ,\] i.e. the $K$-vector space of rational functions on $C$ with ``poles no worse than specified by $D$''. We quote: Riemann Roch for genus $1$: \[ \dim \mathcal{L}(D) = \begin{cases} \deg D & \text{if $\deg D > 0$} \\ 0 \text{ or } 1 & \text{if $\deg D = 0$} \\ 0 & \text{if $\deg D < 0$} \end{cases} \] For example, in \cref{eg:2.6}: \begin{align*} \mathcal{L}(2P) &= \langle 1, x \rangle \\ \mathcal{L}(3P) &= \langle 1, x, y \rangle \end{align*}