%! TEX root = EC.tex % vim: tw=50 % 05/03/2025 11AM % Example Sheet 3: % Questions 1, 3, 8 So we have a map \begin{align*} \ker \left( \frac{E(K)}{nE(K)} \to \frac{E(L)}{n E(L)} \right) &\stackrel{(*)}{\to} \Maps(\Gal(L / L), E\tors[n]) \\ P + nE(K) &\mapsto (\sigma \mapsto \sigma Q - Q) &&\text{where $nQ = P$} \end{align*} It remains to show ($*$) is injective. So suppose $P_1, P_2 \in E(K)$, $P_i = nQ_i$ for $i = 1, 2$, and suppose $\sigma Q_1 - Q_1 = \sigma Q_2 - Q_2$ for all $\sigma \in \Gal(L / K)$. Then $\sigma(Q_1 - Q_2) = Q_1 - Q_2$ for all $\sigma \in \Gal(L / K)$, hence $Q_1 - Q_2 \in E(K)$, so $P_1 - P_2 \in n E(K)$. Hence $P_1 + n E(K) = P_2 + n E(K)$ as desired. \end{proof} \begin{fcthmstar}[Weak Mordell-Weil Theorem] \glsnoundefn{wmwt}{Weak Mordell-Weil Theorem}{NA}% Assuming: - $K$ a number field - $E / K$ a \gls{ellc} - $n \ge 2$ an integer Then: $\frac{E(K)}{n E(K)}$ is finite. \end{fcthmstar} \begin{proof} \cref{lemma:12.1} tells us that we may replace $K$ by a finite Galois extension. So without loss of generality $\mu_n \subset K$ and $E\tors[n] \subset E(K)$. Let \[ S = \{\mathfrak{p} \st n\} \cup \{\text{primes of \gls{pbred} for $E / K$}\} .\] For each $P \in E(K)$, the extension $K([n]^{-1} P) / K$ is unramified outisde $S$ by \cref{thm:9.8}. Since $\Gal(\ol{K} / K)$ acts on $[n]^{-1} P$, it follows that $\Gal(\ol{K} / K([n]^{-1} P))$ is a normal subgroup of $\Gal(\ol{K} / K)$ and hence $K([n]^{-1} P) / K$ is a Galois extension. Let $Q \in [n]^{-1} P$. Since $E\tors[n] \subset E(K)$, we have $K(Q) = K([n]^{-1} P)$. Consider \begin{align*} \Gal(K(Q) / K) &\to E\tors[n] \cong (\Zbb / n\Zbb)^2 \\ \sigma &\mapsto \sigma Q - Q \end{align*} \textbf{Group homomorphism:} $\sigma \tau Q - Q = \cancel{\sigma} (\tau Q - Q) + (\sigma Q - Q)$. \textbf{Injective:} If $\sigma Q = Q$ then $\sigma$ fixes $K(Q)$ pointwise, i.e. $\sigma = 1$. Therefore $K(Q) / K$ is an abelian extension of exponent $n$, unramified outside $S$. \cref{prop:11.3} shows that as we vary $P \in E(K)$ there are only finitely many possibilities for $K(Q)$. Let $L$ be the composite of all such extensions of $K$. Then $L / K$ is finite and Galois, and $\frac{E(K)}{n E(K)} \to \frac{E(L)}{n E(L)}$ is the zero map. \cref{lemma:12.1} gives $\left| \frac{E(K)}{n E(K)} \right| < \infty$. \end{proof} \begin{remark*} If $K = \Rbb$ or $\Cbb$, or $[K : \Qbb_p] < \infty$ then $\left| \frac{E(K)}{n E(K)} \right| < \infty$, yet $E(K)$ is uncountable, so not finitely generated. \end{remark*} \textbf{Fact:} If $K$ is a number field, then there exists a \gls{qf} (= canonical height) $\hat{h} : E(K) \to \Rbb_{\ge 0}$ with the property that for any $B \ge 0$, \[ \{P \in E(K) \mid \hat{h}(P) \le B\} \tag{$*$} \label{lec18eq1} \] is finite. \begin{fcthmstar}[Mordell-Weil Theorem] \glsnoundefn{mwt}{Mordell-Weil}{NA}% Assuming: - $K$ a number field - $E / K$ an \gls{ellc} Then: $E(K)$ is a finitely generated abelian group. \end{fcthmstar} \begin{proof} Fix an integer $n \ge 2$. \gls{wmwt} implies that $\left| \frac{E(K)}{n E(K)} \right| \infty$. Pick coset representatives $P_1, P_2, \ldots, P_m$. Let \[ \Sigma = \{P \in E(K) \st \hat{(P)} \le \max_{1 \le i \le m} \hat{h}(P_i)\} .\] \textbf{Claim:} $\Sigma$ generates $E(K)$. If not, then there exists $P \in E(K) \setminus (\text{subgroup generated by $\Sigma$})$ of minimal height (exists by \eqref{lec18eq1}). Then $P = P_i + nQ$ for some $i$ and $Q \in E(K)$. Note that $Q \in E(K) \setminus (\text{subgroup generated by $\Sigma$})$. Minimal choice of $P$ gives \begin{align*} 4\hat{h}(P) &\le 4\hat{h}(Q) \\ &\le n^2 \hat{h}(Q) \\ &= \hat{h}(nQ) \\ &= \hat{h}(P - P_i) \\ &\le \hat{h}(P - P_i) + \hat{h}(P + P_i) \\ &= 2\hat{h}(P) + 2\hat{h}(P_i) &&\text{parallelogram law} \end{align*} Therefore $\hat{h}(P) \le \hat{h}(P_i)$. Hence $P \in \Sigma$ (by definition of $\Sigma$), which contradicts the choice of $P$. This proves the claim. By \eqref{lec18eq1}, $\Sigma$ is finite. \end{proof} \newpage \section{Heights} For simplicity, take $K = \Qbb$. Write $P \in \Pbb^n(Q)$ as $P = (a_0 : a_1 : \cdots : a_n)$ where $a_0, \ldots, a_n \in \Zbb$ and $\gcd(a_0, a_n) = 1$. \begin{fcdefnstar}[Height of a point] \glssymboldefn{pointheight}% $H(P) = \max_{0 \le i \le n} |a_i|$. \end{fcdefnstar} \begin{fclemma}[] \label{lemma:13.1} Assuming: - $f_1, f_2 \in \Qbb[X_1, X_2]$ coprime homogeneous polynomials of degree $d$ - let \begin{align*} F : \Pbb^1 &\to \Pbb^1 \\ (x_1 : x_2) &\mapsto (f_1(x_1, x_2) : f_2(x_1, x_2)) \end{align*} Then: there exist $c_1, c_2 > 0$ such that for all $P \in \Pbb^1(\Qbb)$, \[ c_1 \height(P)^d \le \height(F(P)) \le c_2 \height(P)^d .\] \end{fclemma} \begin{proof} Without loss of generality $f_1, f_2 \in \Zbb[X_1, X_2]$. \textbf{Upper bound:} Write $P = (a_1 : a_2)$, $a_1, a_2 \in \Zbb$ coprime. \begin{align*} \height(F(P)) &\le \max(|f_1(a_1, a_2)|, |f_2(a_1, a_2)|) \\ &\le c_2 \max(|a_1|^d, |a_2|^d) \end{align*} where \[ c_2 = \max_{i = 1, 2} \text{(sum of absolute values of coefficients of $f_i$)} .\] Therefore $\height(F(P)) \le c_2 \height(P)^d$. \textbf{Lower bound:} We claim that there exists $g_{ij} \in \Zbb[X_1, X_2]$ homogeneous of degree $d - 1$ and $\kappa \in \Zbb_{> 0}$ such that \[ \sum_{j = 1}^2 g_{ij} f_j = \kappa X_i^{2d - 1} , \quad i = 1, 2 \tag{$\dag$} \label{lec18eq2} .\] Indeed, running Euclid's algorithm on $f_1(X, 1)$ and $f_2(X, 1)$ gives $r, s \in \Qbb[X]$ of degree $< d$ such that \[ r(X) f_1(X, 1) + s(X) f_2(X, 1) = 1 .\] Homogenising and clearing denominators gives \eqref{lec18eq2} for $i = 2$. Likewise for $i = 1$. Write $P = (a_1 : a_2)$ with $a_1, a_2 \in \Zbb$ coprime. \eqref{lec18eq2} gives \[ \sum_{j = 1}^2 g_{ij}(a_1, a_2) f_j(a_1, a_2) = \kappa a_i^{2d - 1} , \quad i = 1, 2 .\] Therefore $\gcd(f_1(a_1, a_2), f_2(a_1, a_2))$ divides $\gcd(\kappa a_1^{2d - 1}, \kappa a_2^{2d - 1}) = \kappa$.