%! TEX root = EC.tex % vim: tw=50 % 26/02/2025 11AM Let $[K : \Qbb_p] < \infty$ and $L / K$ a finite extension. Let the residue fields be $k'$ and $k$, and let $f = [k' : k]$. \begin{picmath} \begin{tikzcd} K^* \ar[r, "V_K", two heads] \arrow[d, phantom, sloped, "\subset"] & \Zbb \ar[d, "\times e"] \\ L^* \ar[r, "V_L", two heads] & \Zbb \end{tikzcd} \end{picmath} \textbf{Facts:} \begin{enumerate}[(i)] \item $[L : K] = ef$. \item If $L / K$ is Galois then the natural map $\Gal(L / K) \to \Gal(k' / k)$ is surjective with kernel of order $e$. \end{enumerate} \begin{fcdefnstar}[Unramified] \glsadjdefn{unram}{unramified}{extension}% $L / K$ is \emph{unramified} if $e = 1$. \end{fcdefnstar} \textbf{Fact:} For each $m \ge 1$ \begin{enumerate}[(i)] \item $k$ has a unique extension of degree $m$ (say $k_m$). \item $K$ has a unique unramified extension of degree $m$ (say $K_m$). \end{enumerate} These extensions are Galois, with cyclic Galois groups. \begin{fcdefnstar}[Maximal unramified extension] \glssymboldefn{nr}% $K^{\text{nr}} = \bigcup_{m \ge 1} K_m$ (inside $\ol{K}$). ``maximal unramified extension'' \end{fcdefnstar} \begin{fcthm}[] \label{thm:9.8} Assuming: - $[K : \Qbb_p] < \infty$ - $E / K$ has \gls{gred} - $p \nmid n$ - $P \in E(K)$ Then: $K([n]^{-1} P) / K$ is \gls{unram}. \end{fcthm} \begin{notation*} \phantom{} \[ [n]^{-1} (P) = \{Q \in E(\ol{K}) : nQ = P\} ,\] \[ K(\{Q_1, \ldots, Q_r\}) = K(x_1, \ldots, x_r, y_1, \ldots, y_r) ,\] where $Q_i = (x_i, y_i)$. \end{notation*} \begin{proof} For each $m \ge 1$ there is a short exact sequence \[ 0 \to E_1(K_m) \to E(K_m) \to \reduction{E}(K_m) \to 0 .\] Taking $\bigcup_{m \ge 1}$ gives a commutative diagram with exact rows: \begin{picmath} \begin{tikzcd} 0 \ar[r] & E_1(K^\nr) \ar[r] \ar[d] & E(K^\nr) \ar[r] \ar[d] & \reduction{E}(\ol{k}) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & E_1(K^\nr) \ar[r] & E(K^\nr) \ar[r] & \reduction{E}(\ol{k}) \ar[r] & 0 \end{tikzcd} \end{picmath} \begin{center} \includegraphics[width=0.6\linewidth]{images/dcf3d76d0887429e.png} \end{center} An isomorphism by \cref{coro:8.5} applied over each $K_m$ (using $p \nmid n$ here). \begin{itemize} \item surjective by \cref{thm:2.8} \item kernel $\cong (\Zbb / n\Zbb)^2$ by \cref{thm:6.5} (again using $p \nmid n$). \end{itemize} Snake lemma gives \[ \begin{cases} E(K^\nr)[n] \cong (\Zbb / n\Zbb)^2 \\ \frac{E(K^\nr)}{n E(K^\nr)} = 0 \end{cases} \] So if $P \in E(K)$ then there exists $Q \in E(K^\nr)$ such that $nQ = P$ and \[ [n]^{-1} P = \{Q + T : T \in E[n]\} \subset E(K^\nr) .\] Hence $K([n]^{-1} P) \subset K^\nr$ and so $K([n]^{-1} P) / K$ is \gls{unram}. \end{proof} \newpage \section{Elliptic Curves over Number Fields: The torsion subgroup} $[K : \Qbb] < \infty$, $E / K$ an \gls{ellc}. \begin{notation*} $\mathfrak{p}$ a prime of $K$ (i.e. a prime) ideal in $\mathcal{O}_K$). $K_{\mathfrak{p}}$ is the $\mathfrak{p}$-adic completion of $K$, valuation ring $\mathcal{O}_{\mathfrak{p}}$. $k_{\mathfrak{p}} = \mathcal{O}_K / \mathfrak{p}$ residue field. \end{notation*} \begin{fcdefnstar}[Good reduction (prime)] \glsadjdefn{pgred}{good reduction}{of a prime}% \glsadjdefn{pbred}{bad reduction}{of a prime}% $\mathfrak{p}$ is a prime of \emph{good reduction} for $E / K$ if $E / K_{\mathfrak{p}}$ has \gls{gred}. \end{fcdefnstar} \begin{fclemma}[] \label{lemma:10.1} $E / K$ has only finitely many \cloze{primes of \gls{pbred}.} \end{fclemma} \begin{proof} Take a \gls{weq} for $E$ with $a_1, \ldots, a_6 \in \mathcal{O}_K$. $E$ non-singular implies that $0 \neq \Delta \in \mathcal{O}_K$. Write $(\Delta) = \mathfrak{p}^{\alpha_1} \cdots \mathfrak{p}_r^{\alpha_r}$ (factorisation into prime ideals). Let $S = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\}$. If $\mathfrak{p} \notin S$ then $v_{\mathfrak{p}}(\Delta) = 0$. Hence $E / K_{\mathfrak{p}}$ has good reduction. Therefore $\{\textbf{bad primes for $E$}\} \subset S$, hence is finite. \end{proof} \begin{remark*} If $K$ has class number $1$ (e.g. $K = \Qbb$) then we can always find a \gls{weq} for $E$ with $a_1, \ldots, a_6 \in \mathcal{O}_K$ which is \gls{min} at all primes $\mathfrak{p}$. \end{remark*} \textbf{Basic group theory:} If $A$ is a finitely generatead abelian group then $A \cong \{\text{finite group}\} \times \Zbb^r$. We call $r$ the ``rank'', and $\{\text{finite subgroup}\}$ is the torsion subgroup. \begin{fclemma}[] \label{lemma:10.2} $E(K)_{\text{tors}}$ is finite. \end{fclemma} \begin{proof} Take any prime $\mathfrak{p}$. We saw that $E(K_{\mathfrak{p}})$ has a finite index subgroup $A$ (say) with $A \cong (\mathcal{O}_{\mathfrak{p}}, +)$. In particular, $A$ is torsion free \[ E(K)_{\text{tors}} \injto E(K_{\mathfrak{p}})_{\text{tors}} \injto \ub{\frac{E(K_{\mathfrak{p}})}{A}}_{\text{finite}} . \qedhere \] \end{proof} \begin{fclemma}[] \label{lemma:10.3} Assuming: - $\mathfrak{p}$ is a prime of \gls{pgred} - $\mathfrak{p} \nmid n$ Then: reduction modulo $\mathfrak{p}$ gives an injective group homomorphism \[ E(K)[n] \injto \reduction{E}(k_{\mathfrak{p}}) .\] \end{fclemma} \begin{proof} \cref{prop:9.5} gives that $E(K_{\mathfrak{p}}) \to \reduction{E}(k_{\mathfrak{p}})$ is a group homomorphism, with kernel $E_1(K_{\mathfrak{p}})$. \cref{coro:8.5} and $\mathfrak{p} \nmid n$ gives that $E_1(K_{\mathfrak{p}})$ has no $n$-torsion. \end{proof} \begin{example*} $E / \Qbb$: $y^2 + y = x^3 - x$, $\Delta = -11$. $E$ has \gls{pgred} at all $p \neq 11$. \begin{center} \begin{tabular}{c|cccccc} $p$ & $2$ & $3$ & $5$ & $7$ & $11$ & $13$ \\ \hline $\#\reduction{E}(\Fbb_p)$ & $5$ & $5$ & $5$ & $5$ & $-$ & $10$ \end{tabular} \end{center} \cref{lemma:10.3} gives: \[ \begin{cases} \#(\Qbb)_{\text{tors}} \mid 5 \cdot 2^a & \text{for some $a \ge 0$} \\ \#E(\Qbb)_{\text{tors}} \mid 5 \cdot 3^b & \text{for some $b \ge 0$} \end{cases} \] Hence $\#(\Qbb)_{\text{tors}} \mid 5$. Let $T = (0, 0) \in E(\Qbb)$. Calculation gives $5T = 0$. Therefore $E(\Qbb)_{\text{tors}} \cong \Zbb / 5\Zbb$. \end{example*} \begin{example*} $E / \Qbb$: $y^2 + y = x^3 + x^2$, $\Delta = -43$ \begin{center} \begin{tabular}{c|cccccc} $p$ & $2$ & $3$ & $5$ & $7$ & $11$ & $13$ \\ \hline $\#\reduction{E}(\Fbb_p)$ & $5$ & $6$ & $10$ & $8$ & $9$ & $19$ \end{tabular} \end{center} \cref{lemma:10.3} gives: \[ \begin{cases} \#E(\Qbb)_{\text{tors}} \mid 5 \cdot 2^a & \text{for some $a \ge 0$} \\ \#E(\Qbb)_{\text{tors}} \mid 9 \cdot 11^b & \text{for some $b \ge 0$} \end{cases} \] Therefore $E(\Qbb)_{\text{tors}} = \{0\}$. Therefore $P = (0, 0)$ is a point of infinite order. In particular, $E(\Qbb)$ is infinite. \end{example*}