%! TEX root = EC.tex % vim: tw=50 % 24/02/2025 11AM \begin{notation*} \glssymboldefn{reductionns}% \phantom{} \[ \begin{cases} \reduction{E} & \text{if $E$ has \gls{gred}} \\ \reduction{E} \setminus \{\text{singular point}\} & \text{if $E$ has \gls{bred}} \end{cases} \] \end{notation*} The chord and tangent process still defines a group law on $\reduction{E}_{\text{ns}}$. In cases of \gls{bred}, $\reductionns{E} \cong \mathbb{G}_m$ (over $k$ or possibly a quadratic extension of $k$) or $\reductionns{E} \cong \mathbb{G}_a$ (over $k$). For simplicity we suppose $\char k \neq 2$. Then $\reduction E = y^2 = f(x)$, $\deg f = 3$. \begin{center} \includegraphics[width=0.8\linewidth]{images/46cc041b951c40ba.png} \end{center} \begin{align*} \reductionns{E} &\congto \mathbb{G}_a \\ (x, y) &\mapsto \frac{x}{y} \\ (t^{-2}, t^{-3}) &\mapsfrom t \\ (\text{point at $\infty$}) &\mapsfrom 0 \end{align*} Let $P_1, P_2, P_3$ lie on the line $ax + by = 1$. Write $P_i = (x_i, y_i)$, $t_i = \frac{x_i}{y_i}$. Then $x_i^3 = y_i^2 = y_i^2(ax_i + b y_i)$. So $t_i^3 - a t_i - b = 0$. So $t_1, t_2, t_3$ are the roots of $T^3 - aT - b = 0$. Looking at coefficient of $T^2$ gives $t_1 + t_2 + t_3 = 0$. \begin{fcdefnstar}[$E_0(K)$] $E_0(K) = \{P \in E(K) \st \tilde{P} \in \reductionns{E}(k)\}$. \end{fcdefnstar} \begin{fcprop}[] \label{prop:9.5} $E_0(K)$ is a subgroup of \cloze{$E(K)$} and \cloze[1]{reduction modulo $\pi$ is a surjective group homomorphism $E_0(K) \to \reductionns E(k)$}. \end{fcprop} \begin{note*} If $E / K$ has \gls{gred}, then this is a surjective group homomorphism $E(K) \to \reduction E(k)$. \end{note*} \begin{proof} \textbf{Group homomorphism:} A line $l$ in $\Pbb^2$ defined over $K$ has equation \[ l : aX + bY + cZ = 0 \qquad a, b, c \in K .\] We may assume $\min(v(a), v(b), v(c)) = 0$. Reduction modulo $\pi$ gives a line \[ \tilde{l} : \tilde{a} X + \tilde{b} Y + \tilde{c} Z = 0 .\] If $P_1, P_2, P_3 \in E(K)$ with $P_1 + P_2 + P_3 = 0$ then these points lie on a line $l$. So $\tilde{P}_1, \tilde{P}_2, \tilde{P}_3$ lie on the line $\tilde{l}$. If $\tilde{P}_1, \tilde{P}_2 \in \reductionns(k)$ then $\tilde{P}_3 \in \reductionns(k)$. So if $P_1, P_2 \in E_0(K)$ then $P_3 \in E_0(K)$ and $\tilde{P}_1 + \tilde{P}_2 + \tilde{P}_3 = 0$. [Exercise: check this still works if $\#\{\tilde{P}_1, \tilde{P}_2, \tilde{P}_3\} < \infty$] \textbf{Surjective:} Let $f(x, y) = y^2 + a_1 xy + a_3 y - (x^3 + \cdots)$. Let $\tilde{P} \in \reductionns{E}(k) \setminus \{0\}$, say $\tilde{P} = (\tilde{x}_0, \tilde{y}_0)$ for some $x_0, y_0 \in \mathcal{O}_K$. Since $\tilde{P}$ non-singular, either: \begin{enumerate}[(i)] \item $\frac{\partial f}{\partial x}(x_0, y_0) \not\equiv 0 \pmod\pi$. \item $\frac{\partial f}{\partial y}(x_0, y_0) \not\equiv 0\pmod\pi$. \end{enumerate} If (i) then put $g(t) = f(t, y_0) \in \mathcal{O}_K[t]$. Then \[ \begin{cases} g(x_0) \equiv 0 & \pmod\pi \\ g'(x_0) \in \mathcal{O}_K^* \end{cases} \] Hensel's lemma gives us that there exists $b \in \mathcal{O}_K$ such that \[ \begin{cases} g(b) = 0 \\ b \equiv x_0 \pmod\pi \end{cases} \] Then $(b, y_0) \in E(K)$ has erduction $\tilde{P}$. asdfadsf \end{proof} Recall that for $r \ge 1$ we put \[ E_r(K) = \{(x, y) \st v(x) \le -2r, v(y) \le -3r\} \cup \{0\} .\] If $r > \frac{e}{p - 1}$, these give: \[ \ub{E_r(K)}_{\cong (\mathcal{O}_K, +)} \subset \cdots \subset \ub{E_2(K)}_{= \hat{E}(\pi^2 \mathcal{O}_K)} \subset \ub{E_1(K)}_{= \hat{E}(\pi \mathcal{O}_K)} \subset E_0(K) \subset E(K) ,\] where for $i \ge 1$, each $E_{i + 1}(K) \subset E_i(K)$ gives a quotient isomorphic to $(k, +)$. We have $\frac{E_0(K)}{E_1(K)} \cong \reductionns{E}(k)$. What about $\frac{E(K)}{E_0(K)}$? \begin{fclemma}[] \label{lemma:9.6} Assuming: - $|k| < \infty$ Then: $E_0(K) \subset E(K)$ has finite index. \end{fclemma} \begin{proof} $|k| < \infty$ implies that $\frac{\mathcal{O}_K}{\pi^r \mathcal{O}_K}$ is finite for all $r \ge 1$. Hence \[ \mathcal{O}_K \cong \invlim{r} \frac{\mathcal{O}_K}{\pi^r \mathcal{O}_K} \] is a profinite group, hence compact. Then $\Pbb^n(K)$ is the union of sets \[ \{(a_0 : \cdots : a_{i - 1} : 1 : a_{i + 1} : \cdots : a_n) : a_j \in \mathcal{O}_K\} \] and hence compact (for the $\pi$-adic topology). Now note $E(K) \subset \Pbb^2(K)$ is a closed subset, hence compact. So $E(K)$ is a compact topological group. If $\reduction E$ has a singular point $(\tilde{x}_0, \tilde{y}_0)$ then \[ E(K) \setminus E_0(K) = \{(x, y) \in E(K) \st v(x - x_0) \ge 1, v(y - y_0) \ge 1\} \] is a closed subset of $E(K)$ hence $E_0(K)$ is an open subgroup of $E(K)$. The cosets of $E_0(K)$ are an open cover of $E(K)$. Hence $[E(K) : E_0(K)] < \infty$. \end{proof} \begin{fcdefnstar}[Tamagawa number] \glsnoundefn{Tnum}{Tamagawa number}{Tamagawa numbers}% \glssymboldefn{cK}% $c_K(E) = [E(K) : E_0(K)]$ is called the \emph{Tamagawa number}. \end{fcdefnstar} \begin{remark*} \phantom{} \begin{enumerate}[(i)] \item If we have \gls{gred} then $\cK(E) = 1$ (converse is false). \item It can be shown that \begin{itemize} \item either $\cK(E) = v(\Delta)$ \item or $\cK(E) \le 4$ \end{itemize} for the above statements: it is essential that we work with \gls{min} \glspl{weq}. \end{enumerate} \end{remark*} We deduce: \begin{fcthm}[] \label{thm:9.7} Assuming: - $[K : \Qbb_p] < \infty$ Then: $E(K)$ contains a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$. \end{fcthm} \noproof