%! TEX root = EC.tex % vim: tw=50 % 21/02/2025 11AM If $K$ is complete, then $\mathcal{O}_K$ is \gls{complete} with respect to $\pi^r \mathcal{O}_K$ (for any $r \ge 1$). We fix a \gls{min} \gls{weq} for $E / K$. Get \gls{fgroup} $\hat{E}$ over $\mathcal{O}_K$. Taking $I = \pi^r \mathcal{O}_K$ (with $r \ge 1$) in \cref{lemma:8.2} gives \begin{align*} \hat{E}(I) &= \left\{(x, y) \in E(K) ~\Bigg|~ -\frac{x}{y}, -\frac{1}{y} \in \pi^r \mathcal{O}_K\right\} \cup \{0\} \\ &= \left\{(x, y) \in E(K) ~\Bigg|~ v \left( \frac{x}{y} \right) \ge r, v \left( \frac{1}{y} \right) \ge r\right\} \cup \{0\} \\ &= \{(x, y) \in E(K) \st v(x) = -2s, v(y) = -3s \text{ for } s \ge r\} \cup \{0\} &&\text{(using \cref{lemma:9.1})} \\ &= \{(x, y) \in E(K) \st v(x) \le -2r, v(y) \le -3r\} \cup \{0\} &&\text{(using \cref{lemma:9.1})} \end{align*} By \cref{lemma:8.2} this is a subgroup of $E(K)$, say $E_r(K)$. \[ \cdots \subset E_2(K) \subset E_1(K) \subset E(K) .\] More generally, for $\mathcal{F}$ a \gls{fgroup} over $\mathcal{O}_K$ \[ \cdots \subset \mathcal{F}(\pi^2 \mathcal{O}_K) \subset \mathcal{F}(\pi \mathcal{O}_K) .\] We claim that \begin{itemize} \item $\mathcal{F}(\pi^r \mathcal{O}_K) \cong (\mathcal{O}_K, +)$ for $r$ sufficiently large. \item $\frac{\mathcal{F}(\pi^r \mathcal{O}_K)}{\mathcal{F}(\pi^{r + 1} \mathcal{O}_K)} \cong (k, +)$ for $r \ge 1$. \end{itemize} Reminder: $\char K = 0$, $\char k = p > 0$. \begin{fcthm}[] \label{thm:9.2} Assuming: - $K$ a local field with $\char K = 0$, $\char k = p > 0$ - $\mathcal{F}$ a \gls{fgroup} over $\mathcal{O}_K$ - $e = v(p)$ - $r > \frac{e}{p - 1}$ Then: \[ \log : \mathcal{F}(\pi^r \mathcal{O}_K) \congto \hat{\mathbb{G}}_a(\pi^r \mathcal{O}_K) \] is an isomorphism of groups with inverse \[ \exp : \hat{\mathbb{G}}_a(\pi^r \mathcal{O}_K) \congto \mathcal{F}(\pi^r \mathcal{O}_K) .\] \end{fcthm} \begin{remark*} $\hat{\mathbb{G}}_a(\pi^r \mathcal{O}_K) = (\pi^r \mathcal{O}_K, +) \cong (\mathcal{O}_K, +)$, $x \leftrightarrow \pi^{-r} x$. \end{remark*} \begin{proof} For $x \in \pi^r \mathcal{O}_K$ we must show the power series $\log(x)$ and $\exp(x)$ converge to elements in $\pi^r \mathcal{O}_K$. Recall \[ \exp(T) = T + \frac{b_2}{2!} T^2 + \frac{b_3}{3!} T^3 + \cdots \] for some $b_i \in \mathcal{O}_K$. Claim: $v_p(n!) \le \frac{n - 1}{p - 1}$. Proof of claim: \[ v_p(n!) = \sum_{r = 1}^{\infty} \left\lfloor \frac{n}{p^r} \right\rfloor < \sum_{r = 1}^{\infty} \frac{n}{p^r} = \frac{n\cdot \frac{1}{p}}{1 - \frac{1}{p}} = \frac{n}{p - 1} .\] Therefore \begin{align*} (p - 1) v_p(n!) &< n \\ (p - 1)v_p(n!) &\le n - 1 \end{align*} (we go from $<$ to $\le \blank - 1$ by noting that the LHS is in $\Zbb$). This proves the claim. Now \begin{align*} v \left( \frac{b_n x^n}{n!} \right) &\ge nr - e \left( \frac{n - 1}{p - 1} \right) \\ &= (n - 1) \ub{\left( r - \frac{e}{p - 1} \right)}_{> 0} + r \end{align*} This is always $\ge r$ and $\to \infty$ as $n \to \infty$. Therefore $\exp(x)$ converges to an element in $\pi^r \mathcal{O}_K$. Same method works for $\log$. \end{proof} \begin{fclemma}[] \label{lemma:9.3} $\frac{\mathcal{F}(\pi^r \mathcal{O}_K)}{\mathcal{F}(\pi^{r + 1} \mathcal{O}_K)} \cong$ \cloze{$(k, +)$} for all $r \ge 1$. \end{fclemma} \begin{proof} Definition of \gls{fgroup} gives \[ F(X, Y) = X + Y + XY (\cdots) .\] So if $x, y \in \mathcal{O}_K$, \[ F(\pi^r x, \pi^r y) \equiv \pi^r (x + y) \pmod{\pi^{r + 1}} .\] Therefore \begin{align*} \mathcal{F}(\pi^r \mathcal{O}_K) &\to (k, +) \\ \pi^r x &\mapsto x \bmod \pi \end{align*} is a surjective group homomorphism with kernel $\mathcal{F}(\pi^{r + 1} \mathcal{O}_K)$. \end{proof} \begin{fccorostar}[] Assuming: - $|k| < \infty$ Then: $\mathcal{F}(\pi \mathcal{O}_K)$ has a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$. \end{fccorostar} \begin{notation*} Reduction modulo $\pi$ \begin{align*} \mathcal{O}_K &\to \frac{\mathcal{O}_K}{\pi \mathcal{O}_K} = k \\ x &\mapsto \tilde{x} \end{align*} \end{notation*} \begin{fcprop}[] \label{prop:9.4} Assuming: - $E / K$ be an \gls{ellc} Then: the reduction mod $\pi$ of any two \gls{min} \glspl{weq} for $E$ define isomorphic curves over $k$. \end{fcprop} \begin{proof} Say \glspl{weq} are related by $[u; r, s, t]$, $u \in K^*$, $r, s, t \in K$. Then $\Delta_1 = u^{12} \Delta_2$. Both equations \gls{min} gives us that $v(\Delta_1) = v(\Delta_2)$, hence $u \in \mathcal{O}_K^*$. Transformation formula for the $a_i$ and $b_i + \mathcal{O}_K$ is integrally closed, hence $r, s, t \in \mathcal{O}_K$. The \glspl{weq} obtained by reducing mod $\pi$ are now related by $[\tilde{u}; \tilde{r}, \tilde{s}, \tilde{t}]$, $\tilde{u} \in k^*$, $\tilde{r}, \tilde{s}, \tilde{t} \in k$. \end{proof} \begin{fcdefnstar}[] \glsadjdefn{gred}{good reduction}{\gls{ellc}}% \glsadjdefn{bred}{bad reduction}{\gls{ellc}}% \glssymboldefn{reduction}% The reduction $\tilde{E} / k$ of $E / K$ is defined by the reduction of a \gls{min} \gls{weq}. $E$ has \emph{good reduction} if $\tilde{E}$ is non-singular (and so an \gls{ellc}) otherwise has \emph{bad reduction}. For an \gls{int} \gls{weq}, \begin{itemize} \item If $v(\Delta) = 0$ then good reduction. \item If $0 < v(\Delta) < 12$ then bad reduction. \item If $v(\Delta) \ge 12$ then beware that the equation might not be \gls{min}. \end{itemize} \end{fcdefnstar} There is a well-defined map \begin{align*} \Pbb^2(K) &\to \Pbb^2(k) \\ (x : y : z) &\mapsto (\tilde{x} : \tilde{y} : \tilde{z}) \end{align*} (choose a representative with $\min(v(x), v(y), v(z)) = 0$). We restrict to give \begin{align*} E(K) &\to \tilde{E}(K) \\ P &\mapsto \tilde{P} \end{align*} If $P = (x, y) \in E(K)$ then by \cref{lemma:9.1} either \begin{itemize} \item $x, y \in \mathcal{O}_K$ in which case $\tilde{P} = (\tilde{x}, \tilde{y})$. \item or $v(x) = -2s$, $v(y) = -3s$ for some $s \ge 1$, in which case $P = (x : y : 1) = (\pi^{3s} x : \pi^{3s} y : \pi^{3s})$ and $\tilde{P} = (0 : 1 : 0)$. \end{itemize} Therefore \[ E_1(K) = I didn't manage to write this before it was rubbed off \] ``kernel of reduction''.