%! TEX root = EC.tex % vim: tw=50 % 19/02/2025 11AM % Examples Class: % Friday 28th February, MR9, 3:30pm. % Hand in: 1, 9, 10. % Drop in session: % 3pm-4pm today, CMS central core \begin{fclemma}[] \label{lemma:8.4} Assuming: - $f(T) = aT + \cdots \in R[[T]]$ with $a \in R^\times$ Then: there exists a unique $g(T) = a^{-1} T + \cdots \in R[[T]]$ such that $f(g(T)) = g(f(T)) = T$. \end{fclemma} \begin{proof} We construct polynomials $g_n(T) \in R[T]$ such that \begin{align*} f(g_n(T)) &\equiv T \pmod{T^{n + 1}} \\ g_{n + 1}(T) &\equiv g_n(T) \pmod{T^{n + 1}} \end{align*} Then $g(T) = \lim_{n \to \infty} g_n(T)$ satisfies $f(g(T)) = T$. To start the induction, we set $g_1(T) = a^{-1} T$. Now suppose $n \ge 2$ and $g_{n - 1}(T)$ exists. Then \[ f(g_{n - 1}(T)) \equiv T + b T^n \pmod{T^{n + 1}} .\] We put $g_n(T) = g_{n - 1}(T) + \lambda T^n$ for some $\lambda \in R$ to be chosen later. Then \begin{align*} f(g_n(T)) &= f(g_{n - 1}(T) + \lambda T^n) \\ &\equiv f(g_{n - 1}(T)) + \lambda a T^n \pmod{T^{n + 1}} \\ &\equiv T + (b + \lambda a)T^n \pmod{T^{n + 1}} \end{align*} We take $\lambda = -\frac{b}{a}$ ($a \in R^\times, b \in R \implies \lambda \in R$). This completes the induction step. We get $g(T) = a^{-1}T + \cdots \in R[[T]]$ such that $f(g(T)) = T$. Applying the same construction to $g$ gives $h(T) = aT + \cdots \in R[[T]]$ such that $g(h(T)) = T$. Now note $f(T) = f(g(h(T))) = h(T)$. \end{proof} \cref{thm:8.3}(ii) now follows by \cref{lemma:8.4} and Q12 from \es{2}. \begin{notation*} Let $\mathcal{F}$ (e.g. $\hat{\mathbb{G}}_a$, $\hat{\mathbb{G}}_m$, $\hat{E}$) be a \gls{fgroup} given by a power series $F \in R[[X, Y]]$. Suppose $R$ is a ring \gls{complete} with respect to ideal $I$. For $x, y \in I$, put \[ x \oplus_{\mathcal{F}} y = F(x, y) \in I .\] Then $\mathcal{F}(I) \defeq (I, \oplus_{\mathcal{F}})$ is an abelian group. Examples: \begin{itemize} \item $\hat{\mathbb{G}}_a(I) = (I, +)$ \item $\hat{\mathbb{G}}_m(I) = (1 + I, \times)$ \item $\hat{E}(I) = \text{subgroup of $E(K)$ in \cref{lemma:8.2}}$ \end{itemize} \end{notation*} \begin{fccoro}[] \label{coro:8.5} Assuming: - $F$ a \gls{fgroup} over $R$ - $n \in \Zbb$ such that $n \in R^\times$ Thens:[(i)] - $[n] : \mathcal{F} \to \mathcal{F}$ is an isomorphism of \glspl{fgroup} - If $R$ is \gls{complete} with respect to ideal $I$ then $\mathcal{F}(I) \stackrel{\times n}{\to} \mathcal{F}(I)$ is an isomorphism of groups. In particular, $\mathcal{F}(I)$ has no $n$-torsion. \end{fccoro} \begin{proof} We have \begin{align*} [1](T) &= T \\ [n](T) &= F([n - 1](T), T) \end{align*} (for $n < 0$ use $[-1](T) = \iota(T)$). Since \[ F(X, Y) = X + Y + XY(\cdots) \] we get \[ [2](T) = F(T, T) 2T + \cdots \in R[[T]] \] and by induction we get \[ [n](T) = nT + \cdots \in R[[T]] .\] \cref{lemma:8.4} shows that if $n \in R^{\times}$ then $[n]$ is an isomorphism. This proves (i), and (ii) follows. \end{proof} \newpage \section{Elliptic Curves over Local Fields} Let $K$ be a field, complete with respect to discrete valuation $v : K^* \to \Zbb$. \begin{notation*} Valuation ring (= ring of integers) will be denoted by \[ \mathcal{O}_K = \{x \in K^* \st v(x) \ge 0\} \cup \{0\} .\] Unit group will be denoted by \[ \mathcal{O}_K^* = \{x \in K^* \st v(x) = 0\} .\] The maximal ideal will be denoted by $\pi \mathcal{O}_K$ where $v(\pi) = 1$. The residue field will be denoted by $k = \mathcal{O}_K / \pi \mathcal{O}_K$. We assume $\char K = 0$ and $\char k = p > 0$. For example, $K = \Qbb_p$, $\mathcal{O}_K = \Zbb_p$, $k = \Fbb_p$. \end{notation*} Let $E / K$ be an \gls{ellc}. \begin{fcdefnstar}[Integral / minimal Weierstrass equation] \glsadjdefn{int}{integral}{equation}% \glsadjdefn{min}{minimal}{equation}% A \gls{weq} for $E$ with coefficients $a_1, \ldots, a_6 \in K$ is \emph{integral} if $a_1, \ldots, a_6 \in \mathcal{O}_K$ and \emph{minimal} if $v(\Delta)$ is minimal among all integral \glspl{weq} for $E$. \end{fcdefnstar} \begin{remark*} \phantom{} \begin{enumerate}[(i)] \item Putting $x = u^2 x'$, $y = u^3 y'$ gives $a_i = u^i a_i'$. Therefore \gls{int} \glspl{weq} exist. \item $a_1, \ldots, a_6 \in \mathcal{O}_K \implies \Delta \in \mathcal{O}_K \implies v(\Delta) \ge 0$. Therefore \gls{min} \glspl{weq} exist. \item If $\char k \neq 2, 3$ then there exists \gls{min} \gls{weq} of the form $y^2 = x^3 + ax + b$. \end{enumerate} \end{remark*} \begin{fclemma}[] \label{lemma:9.1} Assuming: - $E / K$ have \gls{int} \gls{weq} \[ y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \] - $0 \neq P = (x, y) \in E(K)$ Then: either $x, y \in \mathcal{O}_K$ or \[ \begin{cases} v(x) = -2s \\ v(y) = -3s \end{cases} \] for some $s \ge 1$. \end{fclemma} (Compare with Q5 from \es{1}) \begin{proof} Throughout this proof, LHS and RHS refer to the \gls{weq} of the curve. \textbf{Case $v(x) \ge 0$:}. If $v(y) < 0$ then $v(\LHS) < 0$ and $v(\RHS) \ge 0$. Therefore $x, y \in \mathcal{O}_K$. \textbf{Case $v(x) < 0$:} $v(\LHS) \ge \min(2v(y), v(x) + v(y), v(y))$ and $v(\RHS) = 3v(x)$. We get 3 possible inequalities from this, and each of them gives $v(y) < v(x)$. Now \begin{align*} v(\LHS) &= 2v(y) \\ v(\RHS) &= 3v(x) \end{align*} so \[ \begin{cases} v(x) = -2s \\ v(y) = -3s \end{cases} \] for some $s \ge 1$. \end{proof}