%! TEX root = EC.tex % vim: tw=50 % 17/02/2025 11AM In fact, \[ w(t) = t^3(1 + A_1 t + A_2 t^2 + \cdots) \] where $A_1 = a_1$, $A_2 = a_1^2 + a_2$, $A_3 = a_1^3 + 2a_1 a_2 + 2a_3$, \ldots \end{remark*} \begin{fclemma}[] \label{lemma:8.2} Assuming: - $R$ an integral domain which is \gls{complete} with respect to an ideal $I$ - $a_1, \ldots, a_6 \in R$ - $K = \Frac(R)$ Then: \[ \hat{E}(I) \defeq \{(t, w) \in E(K) \st t, w \in I\} \] is a subgroup of $E(K)$. \end{fclemma} \begin{note*} By uniqueness in Hensel's lemma: \[ \hat{E}(I) = \{(t, w(t)) \in E(K) \st t \in I\} .\] \end{note*} \begin{proof} Taking $(t, w) = (0, 0)$ show $0_E \in \hat{E}(I)$. So it suffices to show that $P_1, P_2 \in \hat{E}(I)$ then \[ \ub{-P_1 - P_2}_{=P_3} \in \hat{E}(I) .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/05271c376cd44a40.png} \end{center} $P_1, P_2 \in \hat{E}(I)$ implies $t_1, t_2 \in I$, $w_1 = w(t_1) \in I$, $w_2 = w(t_2) \in I$. \begin{align*} w(t) &= \sum_{n = 2}^\infty A_{n - 2} t^{n + 1} &&(A_0 = 1) \\ \lambda &= \begin{cases} \frac{w(t_2) - w(t_1)}{t_2 - t_1} & t_1 \neq t_2 \\ w'(t_1) & t_1 = t_2 \end{cases} \\ &= \sum_{n = 2}^{\infty} A_{n - 2} (t_1^n + t_1^{n - 1} t_2 + \cdots + t_2^n) \in I \\ \nu &= w_1 - \lambda t_1 \in I \end{align*} Substituting $w = \lambda t + \nu$ into $w = f(t, w)$ gives \begin{align*} \lambda t + \nu &= t^3 + a_1 t(\lambda t + \nu) + a_2 t^2(\lambda t + \nu) + a_3(\lambda t + \nu)^2 + a_4 t(\lambda t + \nu)^2 + a_6(\lambda t + \nu)^3 \\ A &= (\text{coefficient of $t^3$}) = 1 + a_2 \lambda + a_4 \lambda^2 + a_6 \lambda^3 \\ B &= (\text{coefficient of $t^2$}) = a_1 \lambda + a_2 \nu + a_3 \lambda^2 + 2a_4 \lambda \nu + 3a_6 \lambda^2 \nu \end{align*} We have $A \in R^\times$ and $B \in I$. Hence $t_3 = -\frac{B}{A} - t_1 - t_2 \in I$, $w_3 = \lambda t_3 + \nu \in I$. \end{proof} Taking $R = \Zbb[a_1, \ldots, a_6][[t]]$, $I = (t)$, then \cref{lemma:8.2} gives that there exists $\iota \in \Zbb[a_1, \ldots, a_6][[t]]$ with $\iota(0) = 0$ and \[ [-1](t, w(t)) = (\iota(t), w(\iota(t))) .\] Taking $R = \Zbb[a_1, \ldots, a_6][[t_1, t_2]]$, $I = (t_1, t_2)$, \cref{lemma:8.2} gives that there exists $F \in \Zbb[a_1, \ldots, a_6][[t_1, t_2]]$ with $F(0, 0) = 0$ and \[ (t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2))) \] and \[ F(X, Y) = X + Y - a_1 XY - a_2 (X^2 Y + XY^2) + \cdots \] By properties of the group law, we deduce \begin{enumerate}[(i)] \item $F(X, Y) = F(Y, X)$ \item $F(X, 0) = X$ and $F(0, Y) = Y$ \item $F(X, F(Y, Z)) = F(F(X, Y), Z)$ \item $F(X, \iota(X)) = 0$ \end{enumerate} \begin{fcdefnstar}[Formal group] \glsnoundefn{fgroup}{formal group}{formal groups}% Let $R$ be a ring. A \emph{formal group} over $R$ is a power series $F(X, Y) \in R[[X, Y]]$ satisfying \begin{cenum}[(i)] \item $F(X, Y) = F(Y, X)$ \item $F(X, 0) = X$ and $F(0, Y) = Y$ \item $F(X, F(Y, Z)) = F(F(X, Y), Z)$ \end{cenum} This looks like it would only define a monoid, but in fact inverses are guaranteed to exist in this context. \end{fcdefnstar} \textbf{Exercise:} Show that for any formal group, there exists a unique \[ \iota(X) = -X + \cdots \in R[[X]] \] such that $F(X, \iota(X)) = 0$. \begin{example*} \phantom{} \begin{enumerate}[(i)] \item $F(X, Y) = X + Y$ (called $\hat{\mathbb{G}}_a$) \item $F(X, Y) = X + Y + XY = (1 + X)(1 + Y) - 1$ (called $\hat{\mathbb{G}}_m$) \item $F(X, Y) = \text{[as above]}$ (called $\hat{E}$) \end{enumerate} \end{example*} \begin{fcdefnstar}[Morphism / isomorphic (formal groups)] \glsnoundefn{fmorph}{morphism}{morphisms}% Let $\mathcal{F}$ and $\mathcal{G}$ be \glspl{fgroup} over $R$ given by power series $F$ and $G$. \begin{cenum}[(i)] \item A \emph{morphism} $f : \mathcal{F} \to \mathcal{G}$ is a power series $f \in R[[T]]$ such that $f(0) = 0$ satisfying \[ f(F(X, Y)) = G(f(x), f(Y)) .\] \item $\mathcal{F} \cong \mathcal{G}$ if there exists $\mathcal{F} \stackrel{f}{\to} \mathcal{G}$ and $\mathcal{G} \stackrel{g}{\to} \mathcal{F}$ morphisms such that $f(g(X)) = g(f(X)) = X$. \end{cenum} \end{fcdefnstar} \begin{fcthm}[All formal groups are isomorphic] \label{thm:8.3} Assuming: - $\char R = 0$ Then: any \gls{fgroup} $\mathcal{F}$ over $R$ is isomorphic to $\hat{\mathbb{G}}_a$ over $R \otimes \Qbb$. More precisely \begin{cenum}[(i)] \item There is a unique power series \[ \log(T) = T + \frac{a_2}{2} T^2 + \frac{a_3}{3} T^3 + \cdots \] with $a_i \in R$ such that \[ \log(F(X, Y)) = \log(X) + \log(Y) \tag{$*$} \label{lec11eq1} .\] \item There is a unique power series \[ \exp(T) = T + \frac{b_2}{2!} + \frac{b_3}{3!} T^3 + \cdots \] with $b_i \in R$ such that \[ \exp(\log(T)) = \log(\exp(T)) = T .\] \end{cenum} \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Notation $F_1(X, Y) = \frac{\partial F}{\partial x} (X, Y)$. \textbf{Uniqueness:} Let \[ p(T) = \frac{\dd}{\dd T} \log(T) = 1 + a-2 T + a_3 T^2 + \cdots .\] Differentiating \eqref{lec11eq1} with respect to $X$ gives \[ p(F(X, Y)) F_1(X, Y) = p(X)+ 0 .\] Putting $X = 0$ gives $p(Y) F_1(0, Y) = 1$, hence $p(Y) = F_1(0, Y)^{-1}$, so $p$ is uniquely determined by $F$ and hence $\log$ is too. \textbf{Existence:} Let \[ p(T) = F_1(0, T)^{-1} = 1 = a_2 T + a_3 T^2 + \cdots \] (say). Let \[ \log(T) = T + \frac{a_2}{2} T^2 + \frac{a_3}{3}T^3 + \cdots .\] Calculate \begin{align*} F(F(X, Y), Z) &= F(X, F(Y, Z)) \\ F_1(F(X, Y), Z) F_1(X, Y) &= F_1(X, F(Y, Z)) &&\frac{\dd}{\dd x} \\ F_1(Y, Z) F_1(0, Y) &= F_1(0, F(Y, Z)) &&\text{put $X = 0$} \\ \implies F_1(Y, Z) p(Y)^{-1} &= p(F(Y, Z))^{-1} \\ \implies F_1(Y, Z) p(F(Y, Z)) &= p(Y) \\ \log(F(Y, Z)) &= \log(Y) + h(Z) &&\text{integrate w.r.t. $Y$} \end{align*} for some power series $h$. Symmetry $Y \leftrightarrow Z$ gives $h(Z) = \log(Z)$. This proves existence. \item We prove a lemma first. \qedhere \end{enumerate} \end{proof}