%! TEX root = EC.tex % vim: tw=50 % 14/02/2025 11AM \begin{fcthm}[] \label{thm:7.4} Assuming: - $E / \Fbb_q$ an \gls{ellc} with $\#E(\Fbb_q) = q + 1 - a$ Then: \[ \Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)} .\] \end{fcthm} \begin{proof} Let $\phi : E \to E$ be the $q$ power Frobenius map. By \cref{coro:7.3} \[ \#E(\Fbb_q) = q + 1 - \isogtr(\phi) .\] Hence $\isogtr(\phi) = a$, $\deg(\phi) = q$. \es{2}, Q6(iii) implies $\phi^2 - a\phi = q = 0$, hence $\phi^{n = 2} - a\phi^{n + 1} + q\phi^n = 0$, so \[ \isogtr(\phi^{n + 2}) - a\isogtr(\phi^{n + 1}) + q\isogtr(\phi^n) = 0 .\] This second order difference equation with initial conditions $\isogtr(1) = 2$, $\isogtr(\phi) = a$ has solution \[ \isogtr(\phi^n) = \alpha^n + \beta^n ,\] where $\alpha, \beta$ are roots of $X^2 - aX + q = 0$. Again by \cref{coro:7.3}, \begin{align*} \#E(\Fbb_q^n) &= q^n + 1 - \isogtr(\phi^n) \\ &= 1 + q^n - \alpha^n - \beta^n \end{align*} Therefore \begin{align*} \Z_E(T) &= \exp \sum_{n = 1}^\infty \left( \frac{T^n}{n} + \frac{(qT)^n}{n} - \frac{(\alpha T)^n}{n} - \frac{(\beta T)^n}{n} \right) \\ &= \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)} \\ &= \frac{1 - aT + qT^2}{(1 - T)(1 - qT)} \qedhere \end{align*} \end{proof} \begin{remark*} \nameref{thm:7.2} tells us that $|a| \le 2\sqrt{q}$. $\alpha = \ol{\beta}$, and so $|\alpha| = |\beta| = \sqrt{q}$ $(*)$. Let $K = \Fbb_q(E)$. $\zeta_K(s) = 0$, so $\Z_E(q^{-s}) = 0$, so $q^s = \alpha$ or $\beta$. Then $q^{\Re(s)} = |\alpha|$ or $|\beta|$, so by $(*)$, $\Re(s) = \half$. ``This is an analog of the Riemann hypothesis.'' \end{remark*} \newpage \section{Formal Groups} \begin{fcdefnstar}[$I$-adic topology] Let $R$ be a ring and $I \subset R$ an ideal. The \emph{$I$-adic topology} on $R$ has basis $\{r + I^n \st r \in R, n \ge 1\}$. \end{fcdefnstar} \begin{fcdefnstar}[Cauchy sequence] \glsadjdefn{cauchy}{Cauchy}{sequence}% A sequence $(x_n)$ in $R$ is \emph{Cauchy} if $\forall k, \exists N$ such that $\forall m, n \ge N$, $x_m - x_n \in I^k$. \end{fcdefnstar} \begin{fcdefnstar}[Complete] \glsadjdefn{complete}{complete}{ring}% $R$ is \emph{complete} if \begin{enumerate}[(i)] \item $\bigcap_{n \ge 0} I^n = \{0\}$ \item every \gls{cauchy} sequence converges \end{enumerate} \end{fcdefnstar} \textbf{Useful remark:} if $x \in I$ then \[ \frac{1}{1 - x} = 1 + x + x^2 + \cdots \] so $1 - x \in R^\times$. \begin{example*} $R = \Zbb_p$, $I = p\Zbb_p$. $R = \Zbb[[t]]$, $I = (t)$. \end{example*} \begin{fclemma}[Hensel's Lemma] \label{lemma:8.1} Assuming: - $R$ is \gls{complete} with respect to an ideal $I$ - $F \in R[X]$, $s \ge 1$ - $a \in R$ satisfies $F(a) \equiv 0 \pmod{I^s}$, $F'(a) \in R^\times$ Then: there exists a unique $b \in R$ such that $F(b) = 0$ and $b \equiv 0 \pmod{I^s}$. \end{fclemma} \begin{proof} Let $u \in R^\times$ with $F(a) = u \pmod{I}$ (e.g. we could take $u = F'(a)$). Replacing $F(X)$ by $\frac{F(X + a)}{u}$, we may assume $a = 0$, $F'(0) \equiv 1 \pmod{I}$. We put $x_0 = 0$, \[ x_{n + 1} = x_n - F(x_n) \tag{1} \label{lec10eq1} \] Easy induction gives \[ x_n \equiv 0 \pmod{I^s} \qquad \forall n \tag{2} \label{lec10eq2} \] Let \[ F(X) - F(Y) = (X - Y) (F'(0) + XG(X, Y) + YH(X, Y)) \tag{3} \label{lec10eq3} \] for some $G, H \in R[X, Y]$. \textbf{Claim:} $x_{n + 1} \equiv x_n \pmod{I^{n + s}}$ for all $n \ge 0$. Proof: By induction on $n$. Case $n = 0$ is true. Suppose $x_n \equiv x_{n = 1} \pmod{I^{n + s - 1}}$. Then \[ F(x_n) - F(x_{n - 1}) = (x_n - x_{n - 1})(1 + c) \pmod{I^{n + s}} \] for some $c \in I$. Hence \[ F(x_n) - F(x_{n - 1}) = x_n - x_{n - 1} \pmod{I^{n + s}} \] Hence \[ x_n - F(x_n) \equiv x_{n - 1} - F(x_{n - 1}) \pmod{I^{n + s}} \] and hence $x_{n + 1} \equiv x_n \pmod{I^{n + s}}$. This proves the claim. Therefore $(x_n)_{n \ge 0}$ is \gls{cauchy}. Since $R$ is \gls{complete}, we have $x_n \to b$ as $n \to \infty$ for some $b \in R$. Taking limit $n \to \infty$ in \eqref{lec10eq1} gives $b = b - F(b)$, hence $F(b) = 0$. Taking limit $n \to \infty$ in \eqref{lec10eq2} gives $b \equiv 0 \pmod{I^s}$. Uniqueness is proved using \eqref{lec10eq3} and the ``useful remark'' (if $x \in I$ then $1 - x \in R^\times$). \end{proof} \[ E: Y^2 Z + a_1 XYZ + a_3 YZ^2 = X^3 + a_2 X^2 Z + a_4 XZ^2 + a_6 Z^3 .\] Affine piece $Y \neq 0$. $t = -\frac{X}{Y}$, $w = -\frac{Z}{Y}$. \[ w = \ub{t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 tw^2 + a_6 w^3}_{= f(t, w)} .\] We apply \cref{lemma:8.1} with \begin{align*} R &= \Zbb[a_1, \ldots, a_6][[t]] \\ I &= (t) \\ F(X) &= X - f(t, X) \in R[X] \end{align*} $s = 3$, $a = 0$. Check: \begin{align*} F(0) &= -f(t, 0) = -t^3 \equiv 0 \pmod{I^3} \\ F'(0) &= 1 - a_1 t - a_2 t^2 \in R^\times \end{align*} Hence there exists a unique $w(t) \in R = \Zbb[a_1, \ldots, a_6][[t]]$ such that \begin{align*} w(t) &= f(t, w(t)) \\ w(t) &\equiv 0 \pmod{t^3} \end{align*} \begin{remark*} Taking $u = 1$ in the proof of \cref{lemma:8.1}, $w(t) = \lim_{n \to \infty} w_n(t)$ where $w_0(t) = 0$, $w_{n + 1}(t) = f(t, w_n(t))$.