%! TEX root = EC.tex % vim: tw=50 % 24/01/2025 11AM % Books: % - Silverman, The arithmetic of elliptic curves, % Springer 1986 % - Cassels, Lectures on elliptic curves, CUP 1991 % Introductory reading: % - Silverman & Tate, Rational points on elliptic % curves, Springer 1992 % Other books: % - Milne, Washington, Knapp, \ldots \newpage \section{Fermat's Method of Infinite Descent} \begin{center} \includegraphics[width=0.6\linewidth]{images/d425f9274f544498.png} \end{center} \begin{fcdefnstar}[Rational, primitive triangle] \glsadjdefn{ratt}{rational}{triangle}% \glsadjdefn{primt}{primitive}{triangle}% A triangle is \emph{rational} if $a, b, c \in \Qbb$. A triangle is \emph{primitive} if $a, b, c \in \Zbb$ and are coprime. \end{fcdefnstar} \begin{fclemma}[] \label{lemma:1.1} % Lemma 1.1 Assuming: - $\Delta$ is a \gls{primt} triangle Then: $\Delta$ is of the form \begin{center} \includegraphics[width=0.6\linewidth]{images/56f7deec1b4e4a90.png} \end{center} for some integers $u > v > 0$. \end{fclemma} \begin{proof} Without loss of generality $a$ odd, $b$ even (work modulo $4$). This then forces $c$ odd. Then \[ \left( \frac{b}{2} \right)^2 = \frac{c + a}{2} \cdot \frac{c - a}{2} ,\] and note that all the fractions are integers. Also note that the product on the right hand side is a product of positive coprime integers. Unique prime factorisation in $\Zbb$ gives that $\frac{c + a}{2} = u^2$, $\frac{c - a}{2} = v^2$ for some $u, v \in \Zbb$. Then $a = u^2 - v^2$, $b = 2uv$, $c = u^2 + v^2$. \end{proof} \begin{fcdefnstar}[Congruent number] \glsadjdefn{congn}{congruent}{number}% $D \in \Qbb_{> 0}$ is a \emph{congruent number} if there exists a \gls{ratt} triangle $\Delta$ with $\area(\Delta) = D$. \end{fcdefnstar} \begin{note*} It suffices to consider $D \in \Zbb_{> 0}$ square-free. \end{note*} \begin{example*} $D = 5, 6$ are \gls{congn}. \end{example*} \begin{fclemma}[] \label{lemma:1.2} % Lemma 1.2 Assuming: - $D \in \Qbb_{> 0}$ Then: \begin{iffc} \lhs $D$ is \gls{congn} \rhs $Dy^2 = x^3 - x$ for some $x, y \in \Qbb$, $y \neq 0$. \end{iffc} \end{fclemma} \begin{proof} \cref{lemma:1.1} shows \[ D \text{ congruent} \iff D w^2 = uv(u^2 - v^2) \] for some $u, v, w \in \Qbb$, with $w \neq 0$. Put $x = \frac{u}{v}$ and $y = \frac{w}{v^2}$. \end{proof} Fermat showed that $1$ is \emph{not} a \gls{congn} number. \begin{theorem}[] \label{thm:1.3} % Theorem 1.3 There is no solution to \[ w^2 = uv(u + v)(u - v) \tag{$*$} \label{thm:1.3_eq} \] for $u, v, w \in \Zbb$ and $w \neq 0$. \end{theorem} \begin{proof} Without loss of generality $u, v$ are coprime, $u > 0$, $w > 0$. If $v < 0$ then replace $(u, v, w)$ by $(-v, u, w)$. If $u, v$ both odd then replace $(u, v, w)$ by $\left( \frac{u + v}{2}, \frac{u - v}{2}, \frac{w}{2} \right)$. Then $u, v, u + v, u - v$ are pairwise coprime positive integers with product a square. Unique factorisation in $\Zbb$ gives \[ u = a^2, \quad v = b^2, \quad u + v = c^2, \quad u - v = d^2 \] for some $a, b, c, d \in \Zbb_{> 0}$. Since $u \not\equiv v \pmod{2}$, both $c$ and $d$ are odd. Then consider: \[ \left( \frac{c + d}{2} \right)^2 + \left( \frac{c - d}{2} \right)^2 = \frac{c^2 + d^2}{2} = u = a^2 .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/9b3821c31d874348.png} \end{center} This is a primitive triangle. The area is $\frac{c^2 - d^2}{8} = \frac{v}{4} = \left( \frac{b}{2} \right)^2$. Let $w_1 = \frac{b}{2}$. \cref{lemma:1.1} gives $w_1^2 = u_1 v_1 (u_1 + v_1)(u_1 - v_1)$ for $u_1, v_1 \in \Zbb$. Therefore we have a new solution to \eqref{thm:1.3_eq}. But $4w_1^2 = b^2 = v \mid w^2$ so $w_1 \le \half w$. So by Fermat's method of infinite descent, there is no solution to \eqref{thm:1.3_eq}. \end{proof} \subsection{A variant for polynomials} In Section 1, $K$ is a field with $\char K \neq 2$. Write $\ol{K}$ for the algebraic closure of $K$. \begin{fclemma} \label{lemma:1.4} % Lemma 1.4 Assuming: - $u, v \in K[t]$ coprime - $\alpha u + \beta v$ is a square for $4$ distinct $(\alpha : \beta) \in \Pbb^1$ Then: $u, v \in K$. \end{fclemma} \begin{proof} Without loss of generality $K = \ol{K}$. Changing coordinates on $\Pbb^1$, we may assume the ratios $(\alpha : \beta)$ are $(1 : 0), (0 : 1), (1 : -1), (1 : -\lambda)$ for some $\lambda \in K \setminus \{0, 1\}$ (M\"obius map). \begin{align*} u &= a^2 \\ v &= b^2 \\ u - v &= (a + b)(a - b) \\ u - \lambda v &= (a + \mu b)(a - \mu b) \end{align*} (where $\mu$ is a square root of $\lambda$). Unique factorisation in $K[t]$ gives that $a + b$, $a - b$, $a + \mu b$, $a - \mu b$ are squares. But \[ \max(\deg(a), \deg(b)) \le \half \max(\deg(u), \deg(v)) .\] So Fermat's method of infinite descent, we get a contradiction, unless the degrees of $u$ and $v$ are zero. So $u, v \in K$. \end{proof} \begin{fcdefn}[Elliptic curve (temporary definition)] \label{defn:1.5} \glsnoundefn{tellc}{elliptic curve}{elliptic curves}% \phantom{} \begin{enumerate}[(i)] \item An elliptive curve $E / K$ is the projective closure of the plane affine curve \[ y^2 = f(x) \] where $f \in K[x]$ is a monic cubic polynomial with distinct roots in $\ol{K}$. We call this equation ``a Weierstrass equation''. \item For $L / K$ any field extension \[ E(L) = \{(x, y) \in L^2 \mid y^2 = f(x)\} \cup \{0\} .\] $0$ is the ``point at infinity'' that we get because we take the projective closure. \end{enumerate} \end{fcdefn} \textbf{Fact}: $E(L)$ is naturally an abelian group. In this course, we study $E(K)$ for $K$ being a finite field, local field ($[K : \Qbb_p] < \infty$) or number field ($[K : \Qbb] < \infty$). \cref{lemma:1.2} and \cref{thm:1.3} tells us that if $E$ is $y^2 = x^3 - x$, then \[ E(\Qbb) = \{0, (0, 0), (\pm 1, 0)\} .\] \begin{corollary} \label{coro:1.6} % Corollary 1.6 Let $E / K$ be an \gls{tellc}. Then $E(K(t)) = E(K)$. \end{corollary}