5 Isogenies Let E 1 E 2 be elliptic curves Definition Isogeny An isogeny E 1 E 2 is a nonconstant morphism with 0 E 1 0 E 2 by Theorem 2 8 a morphism is nonconstant if and only if surjective on K points We say E 1 and E 2 are isogenous in this case Definition Hom E 1 E 2 isogenies E 1 E 2 0 This is an abelian group under P P P If E 1 E 2 E 3 are isogenies then is an isogeny Tower Law implies deg deg deg Proposition 5 1 Assuming that 0 n Then n E E is an isogeny Proof n is a morphism by Theorem 4 4 We must show n 0 Assume char K 2 Case n 2 Lemma 4 5 implies E 2 E implies 2 0 Case n odd Lemma 4 5 implies 0 T E 2 Then n T T 0 which gives n 0 Now use m n m n If char K 2 then could rpelace Lemma 4 5 with an explicit lemma about 3 torsion points Corollary 5 2 Hom E 1 E 2 is a torsion free module Theorem 5 3 Assuming that E 1 E 2 an isogeny Then P Q P Q for all P Q E 1 Proof sketch incudes Div 0 E 1 Div 0 E 2 P E 1 n P P P E 1 n P P Recall K E 2 K E 1 Fact If f K E 1 then div N K E 1 K E 2 f div f So sends principal divisors to principal divisors Since 0 E 1 0 E 2 the following diagram commutes a group homomorphism implies is a group homomorphism Lemma 5 4 Assuming that E 1 E 2 an isogeny Then there exists a morphism making the following diagram commute x i x coordinate on a Weierstrass equation for E i Moreover if t r t s t r s K t coprime then deg deg max deg r deg s Proof For i 1 2 K E i K x i is a degree 2 Galois extension with Galois group generated by 1 Theorem 5 3 implies that 1 1 So if f K x 2 then 1 f 1 f f Therefore f K x 1 In particular x 1 for some rational function Tower Law implies deg deg Now K x 2 K x 1 x 2 x 1 r x 1 s x 1 r s K t coprime We claim the minimal polynomial of x 1 over K x 2 is F t r t s t x 2 K x 2 t Check F x 1 0 true by the definition of our embedding F is irreducible in K x 2 t since r s coprime hence irreducible in K x 2 t by Gauss s lemma Therefore deg K x 1 K x 2 deg F max deg r deg s Lemma 5 5 deg 2 4 Proof Assume char K 2 3 the result is true even in the case of char K 2 3 but we will only prove the simpler case E y 2 x 3 a x b f x If P x y E then x 2 P 3 x 2 a 2 y 2 2 x 3 x 2 a 2 8 x f x 4 f x x 4 f x The numerator and denominator are coprime Indeed otherwise there exists K with f f 0 and hence f has a multiple root contradiction Now Lemma 5 4 implies deg 2 max 4 3 4 Definition Quadratic form in an abelian group Let A be an abelian group We say q A is a quadratic form if i q n x n 2 q x for all n x A ii x y q x y q x q y is bilinear Lemma 5 6 q A is a quadratic form if and only if it satisfies the parallelogram law q x y q x y 2 q x 2 q y x y A Proof Let x y q x y q x q y Then x x q 2 x 2 q x 2 q x the equality in the last step is using property i with n 2 But by ii x y x y x y x y 2 x x 2 y y Hence upon dividing by 2 q x y q x y 2 q x 2 q y See Example Sheet 2 Theorem 5 7 deg Hom E 1 E 2 is a quadratic form Note We define deg 0 0 For the proof we assume char K 2 3 Write E 2 y 2 x 3 a x b Let P Q E 2 with P Q P Q P Q 0 Let x 1 x 4 be the x coordinates of the 4 points Lemma 5 8 There exists W 0 W 1 W 2 a b x 1 x 2 of degree in x 1 and of degree 2 in x 2 such that 1 x 3 x 4 x 3 x 4 W 0 W 1 W 2 Proof Two methods 1 Direct calculation W 0 x 1 x 2 2 W 1 W 2 see formula sheet 2 Let y x be the line through P and Q x 3 a x b x 2 x x 1 x x 2 x x 3 x 3 s 1 x 2 x 2 x s 3 where s i is the i th elementary symmetric polynomial in x 1 x 2 x 3 Comparing coefficients 2 s 1 2 s 2 a 2 s 3 b Eliminating and gives s 2 a 2 4 s 1 s 3 b 0 F x 1 x 2 x 3 where F has degree 2 in x i x 3 is a root of the quadratic W t F x 1 x 2 t Repeating for the line through P and Q shows that x 4 is the other root Therefore W 0 t x 3 t x 4 W 0 t 2 W 1 t W 2 hence 1 x 3 x 4 x 3 x 4 W 0 W 1 W 2 We show that if Hom E 1 E 2 then deg deg 2 deg 2 deg We may assume 0 otherwise trivial or use deg 1 1 deg 2 4 x y 1 x x y 2 x x y 3 x x y 4 x Lemma 5 8 implies 1 3 4 3 4 1 2 2 Put i r i s i r i s i K t coprime s 3 s 4 r 3 s 4 r 4 s 4 r 3 r 4 coprime r 1 s 2 r 2 s 1 2 Therefore deg deg max deg r 3 deg s 3 max deg r 4 deg s 4 max deg s 3 s 4 deg r 3 s 4 r 3 s 3 deg r 3 r 4 2 max deg r 1 deg s 1 2 max deg r 2 deg s 2 2 deg 2 deg 1 Now replace by to get deg 2 deg 2 2 deg 2 deg 4 deg 4 deg 2 deg 2 deg 2 deg 2 deg deg deg 2 1 and 2 give that deg satisfies the parallelogram law hence deg is a quadratic form This proves Theorem 5 7 Corollary 5 9 deg n n 2 deg for all n Hom E 1 E 2 In particular deg n n 2 Example 5 10 Let E K be an elliptic curve Suppose char K 2 Let 0 T E K 2 Without loss of generality E y 2 x x 2 a x b a b K b a 2 4 b 0 and T 0 0 If P x y and P P T x y then x y x 2 a x x 2 a x b x a x b x y y x x b y x Let x x a y x 2 y y y x x b x 2 y x 2 x b x 2 4 b a 2 4 b 2 2 a a 2 4 b Let E y 2 x x 2 a x b where a 2 a b a 2 4 b There is an isogeny E E x y y x 2 y x 2 b x 2 1 2 3 0 ord 0 E 1 0 3 3 0 E 0 1 0 0 E To compute the degree y x 2 x 2 a x b x coprime numerator and denominator as b 0 Lemma 5 4 gives deg 2 We say is a 2 isogeny