11 Kummer Theory

Let K be a field and charKn. Assume μnK.

Lemma 11.1. Assuming that:

  • ΔK(K)n a finite subgroup

  • L=K(Δn)

Then LK is Galois and Gal(LK)Hom(Δ,μn).

Proof. μnK gives LK normal, and charKn gives that LK is separable. So LK is Galois.

Define the Kummer pairing

,:Gal(LK)×Δμn(σ,x)σ(xn)xn

Well-defined: Suppose α,βL with αn=βn=x. Then (αβ)n=1, so αβμnK. Then σ(αβ)=αβ for all σGal(LK), hence σ(α)α=σ(β)β for all σGal(LK).

Bilinear:

στ,x=σ(τxn)τxnτxnxn=σ,xτ,xσ,xy=σxynxyn=σxnxnσynyn=σ,xσ,y

Non-degenerate: Let σGal(LK). If σ,x=1 for all xΔ, then

σxn=xnxΔ

adn hence σ fixes L pointwise, i.e. σ=1.

Let x(K)nΔ. If σ,x=1 for all σGal(LK), then

σxn=xnσGal(LK).

So xnK, so x(K)n, i.e. x(K)nΔ is the identity element.

We get injective group homomorphisms

  • (i) Gal(LK)Hom(Δ,μn).
  • (ii) ΔHom(Gal(LK),μn).

(i) implies Gal(LK) is abelian and of exponent dividing n.

Fact: If G is a finite abelian group of exponent dividing n then Hom(G,μn)G (non canonically).

So

|Gal(LK)|(i)|Δ|(ii)|Gal(LK)|.

Therefore (i) and (ii) are isomorphisms.

Example. Gal((2,3,5))(2)3.

Definition (Abelian extension). We say LK is abelian if it is Galois, and has abelian Galois group.

Similarly for other group terminology (e.g. we can say that LK has exponent dividing n to mean that it is Galois, with Galois group having exponent dividing n).

Theorem 11.2. There is a bijection

{finite subgroupsΔK(K)n}{finite abelian extension LKof exponent dividing n}ΔK(Δn)(L)nK(K)nL

Proof.

  • (i) Let ΔK(K)n be a finite subgroup. Let L=K(Δn) and Δ=(L)nK(K)n.

    We must show Δ=Δ.

    Clearly ΔΔ. So

    L=K(Δn)K(Δn)L.

    So K(Δn)=K(Δn). So Lemma 11.1 gives |Δ|=|Δ|.

    Since ΔΔ, it follows that Δ=Δ.

  • (ii) Let LK be a finite abelian extension of exponent dividing n. Let Δ=(L)nK(K)n. Then K(Δn)L and we aim to prove this inclusion is an equality.

    Let G=Gal(LK). Thu Kummer pairing gives an injection ΔHom(G,μn).

    Claim: This map is surjective.

    Granted the claim,

    [K(Δn):K]=Lemma 11.1|Δ|=by claim|G|=[L:K]

    Since K(Δn)L it follows that L=K(Δn).

    Proof of claim: Let χ:Gμn be a group homomorphism. Distinct automorphisms are linearly independent. So there exists aL such that

    τGχ(τ)1τ(a)=y0.

    Let σG. Then

    σ(y)=τGχ(τ)1στ(a)=τGχ(σ1τ)1τ(a)=χ(σ)τGχ(τ)1τ(a)=χ(σ)y()

    Therefore σ(yn)=yn for all σG. Hence ynK.

    Let x=yn. Then xK(L)n. Then x(K)nΔ.

    Also, by (), χ:σσ(y)y=σxnxn. So the map ΔHom(G,μn) sends xχ. This proves the claim.

Proposition 11.3. Assuming: - K a number field - μnK - S a finite set of promes of K Then there are only finitely many extensions LK such that

  • (i) LK is a finite abelian extension of exponent dividing n
  • (ii) LK is unramified at all 𝔭S

Proof. Theorem 11.2 gives L=K(Δn) for some ΔK(K)n a finite subgroup.

Let 𝔭 be a prime of K.

𝔭OL=P1e1Prer

for P1,,Pr some distinct primes in OL.

If xK represents an element of Δ then

nvPi(xn)=vPi(x)=eiv𝔭(x).

If 𝔭S then all ei=1, so v𝔭(x)0(modn). Therefore ΔK(S,n) where

K(S,n)={xK(K)n|v𝔭(x)0(modn) 𝔭S}.

The proof is completed by the next lemma.

Lemma 11.4. K(S,n) is finite.

Proof. The map

K(S,n)(n)|S|x(v𝔭(x)(modn))𝔭S

is a group homomorphism with kernel K(,n).

Since |S|<, it suffices to prove the lemma with S=.

If xK represents an element of K(,n) then (x)=𝔞n for some fractional ideal 𝔞. There is a short exact sequence

0OK(OK)nK(,n)ClK0x(K)n[𝔞]

|ClK|< and OK being a finitely generated abelian group (Dirichlet’s unit theorem) gives us that K(ϕ,n) is finite.