%! TEX root = AN.tex % vim: tw=50 % 12/02/2025 09AM \subsection{Selberg Sieve} \begin{center} \begin{tabular}{c|c|c} & asymptotes & good upper bound for primes \\ \hline Erastothenes-Legendre & \cmark & \xmark \\ \hline Selberg & \xmark & \cmark \end{tabular} \end{center} \begin{fcthm}[Selberg sieve] \label{thm:ss} Assuming: - $z \ge 2$ - $A \subseteq \Zbb$ finite - $\mathcal{P} \subseteq \Pbb$ - Assume the sieve hypothesis - $h : \Nbb \to [0, \infty)$ be the multiplicative function supported on square-free numbers, given on the primes by \[ h(p) = \begin{cases} \frac{g(p)}{1 - g(p)} & p \in \mathcal{P} \\ 0 & p \notin \mathcal{P} \end{cases} \] Then: \[ S(A, \mathcal{P}, z) \le \frac{|A|}{\sum_{d \le z} h(d)} + \sum_{\substack{d \le z^2 \\ d \mid P(z)}} \tauf_3(d) |R_d| .\] \end{fcthm} \textbf{Sieve hypothesis}: There is a multiplicative $g : \Nbb \to [0, 1]$ and $R_d \in \Rbb$ such that \[ |A_d| = g(d)|A| + R_d \] for all square-free $d \ge 1$. \begin{proof} Let $(\rho_d)_{d \in \Nbb}$ be real numbers with \[ \rho_1 = 1, \rho_d = 0, d > z \tag{$*$} \label{lec9eq1} \] Then, \[ \indicator{(n, P(z)) = 1} \le \left( \sum_{\substack{d \mid n \\ d \mid P(z)}} \rho_d \right)^2 .\] (If $(n, P(z)) = 1$, get $1 \le \rho$ otherwise use $0 \le x^2$). Summing over $n \in A$, \begin{align*} S(A, \mathcal{P}, z) &= \sum_{n \in A} \indicator{(n, P(z)) = 1} \\ &\le \sum_{n \in A} \left( \sum_{\substack{d \mid n \\ d \mid P(z)}} \rho_d \right)^2 \\ &= \sum_{d_1 d_2 \mid P(z)} \rho_{d_1} \rho_{d_2} \sum_{\substack{n \in A \\ [d_1, d_2] \mid n}} 1 \\ &= |A| \sum_{d_1, d_2 \mid P(z)} \rho_{d_1} \rho_{d_2} g([d_1, d_2]) + \ub{\sum_{d_1, d_2 \mid P(z)} \rho_{d_1} \rho_{d_2} R_{[d_1, d_2]}}_{E} &&\text{(sieve hypothesis)} \end{align*} ($[m, n]$ means $\lcm(m, n)$). We first estimate $E$: \begin{align*} E &\le \max_k |\rho_k|^2 \sum_{d_1, d_2 \mid P(z)} |R_{[d_1, d_2]}| \\ &= \max_k |\rho_k|^2 \sum_{\substack{d \le z^k \\ d \mid P(z)}} \sum_{\substack{d_1, d_2 \in \Nbb \\ [d_1, d_2] = d}} |R_d| &&(d = [d_1, d_2]) \end{align*} We have \begin{align*} \sum_{\substack{d_1, d_2 \in \Nbb \\ d = [d_1, d_2]}} 1 &= \sum_{l \le z} \sum_{\substack{d_1', d_2' \in \Nbb \\\ d = ld_1' d_2' \\ (d_1', d_2') = 1}} 1 &&(l = (d_1, d_2), d_1' = d_1 / l, [d_1, d_2] = ld_1' d_2') \\ &\le \tauf_3(d) \end{align*} Therefore \[ E \le \sum_{\substack{d \le z^z \\ d \mid P(z)}} \tauf_3(d) |R_d| \cdot \max_k |\rho_k|^2 .\] Now it suffices to prove that there is a choice of $(\rho_d)_{d \in \Nbb}$ satisfying \eqref{lec9eq1} such that Claim 1: $\sum_{d_1, d_2 \mid P(z)} \rho_{d_1} \rho_{d_2} g([d_1, d_2]) = \frac{1}{\sum_{d \le z}} h(d)$. Claim 2: $|\rho_k| \le 1$ for all $k \in \Nbb$. Proof of claim 1: We have, writing $k = (d_1, d_2)$, $d_i' = \frac{d_i}{k}$, \begin{align*} \sum_{d_1, d_2 \mid P(z)} \rho_{d_1} \rho_{d_2} g([d_1, d_2]) &= \sum_{k \mid P(z)} \mob(k)^2 \sum_{\substack{d_1', d_2' \mid \frac{P(z)}{k} \\ (d_1', d_2') = 1}} \rho_{kd_1'} \rho_{kd_2'} g(kd_1'd_2') \\ &= \sum_{k \mid P(z)} \mob(k)^2 g(k) \sum_{\substack{d_1', d_2' \mid \frac{P(z)}{k} \\ (d_1', d_2') = 1}} \rho_{kd_1'} \rho_{kd_2'} g(d_1') g(d_2') &&\text{(multiplicativity)} \end{align*} We have \[ \indicator{(d_1', d_2') = 1} = \sum_{\substack{c \mid d_1' \\ c \mid d_2'}} \mob(c) \] (since $\mob \conv 1 = \dId$) so the previous expression becomes \begin{align*} &\sum_{k \mid P(z)} \mob(k)^2 g(k) \sum_{c \mid \frac{P(z)}{k}} \mu(c) \sum_{\substack{d_1', d_2' \mid P(z) \\ d_1' \equiv 0 \pmod(c) \\ d_2' \equiv 0 \pmod{c}}} \rho_{kd_1'} \rho_{kd_2'} g(d_1') g(d_2') \\ &= \sum_{k \mid P(z)} \mob(k)^2 g(k) \sum_{c \mid \frac{P(z)}{k}} \mob(k) \left( \sum_{\substack{d \mid \frac{P(z)}{k} \\ d \equiv 0 \pmod{c}}} \right)^2 \\ &= \sum_{k \mid P(z)} \mob(k)^2 g(k)^{-1} \sum_{c \mid \frac{P(z)}{k}} \mob(c) \left( \sum_{d' \mid \frac{P(z)}{ck}} \rho_{ckd'} g(ckd') \right)^2 \\ &= \sum_{n \le z} h(m)^{-1} \left( \sum_{\substack{d \mid P(z) \\ d \equiv 0 \pmod{n}}} \rho_d g(d) \right)^2 \end{align*} (multiplicativity, $d = cd'$, $m = ck$, $d = md'$) since $\frac{1}{h} = \frac{\mob^2}{g} \conv \mu$ (check on primes $\frac{1}{h(p)} = \frac{1}{g(p)} - 1$). Now we get \[ \sum_{d_1, d_2 \mid P(z)} \rho_{d_1} \rho_{d_2} g([d_1, d_2]) = \sum_{m \le z} h(m)^{-1} \zeta_m^2 \] where \[ \zeta_m = \sum_{\substack{d \mid P(z) \\ d \equiv 0 \pmod{m}}} \rho_d g(d) .\] Want to minimise this subject to \eqref{lec9eq1}.