%! TEX root = AN.tex % vim: tw=50 % 10/02/2025 09AM \begin{proof} Recall from previous lecture that \begin{align*} \sieve(A, \mathcal{P}, z) &= \sum_{\substack{d \mid P(z) \\ d \le x}} \mu(d) |A_d| &&\text{(since $A_d = \emptyset$ for $d > x$)} \\ &= \sum_{\substack{d \mid P(z) \\ d \le x}} \mu(d) g(d) |A| + O \left( \sum_{\substack{d \le x \\ d \mid P(z)}} |R_d| \right) &&\text{(sieve hypothesis)} \\ &= |A| \sum_{d \mid P(z)} \mu(d) g(d) + O \left( \sum_{\substack{d \le x \\ d \mid P(z)}} |R_d| + |A| \sum_{\substack{d \mid P(z) \\ d > x}} g(d) \right) \\ &= |A| \prod_{\substack{p \le z \\ p \in \mathcal{P}}} (1 - g(p)) + O \left( \sum_{\substack{d \le x \\ d \mid P(z)}} |R_d| + |A| \sum_{\substack{d \mid P(z) \\ d > x}} g(d) \right) \end{align*} We estimate the first error term using Cauchy-Schwarz: \[ \sum_{\substack{d \le x \\ d \mid P(z)}} |R_d| \le \left( \sum_{\substack{d \le x \\ d \mid P(z)}} |R_d|^2 \right)^{\half} \left( \sum_{\substack{d \le x \\ d \mid P(z)}} 1 \right)^\half .\] Note that if $d \mid P(z)$, $d > x^{\half}$, then \[ \omega(d) \ge \frac{\log x^{\half}}{\log z} ,\] ($\omega(d)$ -- number of distinct prime factors of $d$), since $z^{\omega(d)} \ge d \ge x^{\half}$. Hence, $2^{\omega(d)} \ge 2^{\frac{\log x}{2 \log z}}$, $d \mid P(z)$, $d > x^{\half}$. Now we get \begin{align*} \sum_{\substack{d \le x \\ d \mid P(z)}} 1 &\le 2^{-\frac{\log x}{2 \log z}} \sum_{\substack{d \le x \\ d \mid P(z)}} \ub{2^{\omega(d)}}_{= \tauf(d)} \\ &\le 2^{-\frac{\log x}{2 \log z}} \sum_{d \le x} \tauf(d) \\ &\vll 2^{-\frac{\log x}{2\log z}} x \log x \end{align*} (the last step is by \nameref{dirichlet:d:problem}: $\sum_{d \le x} \tauf(d) = (1 + o(1)) \cdot x \log x$). Substituting this in, the first error term becomes as desired. Now we estimate the second error term. We have \begin{align*} \sum_{\substack{d \mid P(z) \\ d > x}} g(d) &\le x^{-\frac{1}{\log z}} \sum_{d \mid P(z)} g(d) d^{\frac{1}{\log z}} &&\text{(since $d > x$ in the sum: Rankin's trick)} \\ &= x^{-\frac{1}{\log z}} \prod_{\substack{p \le z \\ p \in \mathcal{P}}} (1 + g(p)\ub{p^{\frac{1}{\log z}}}_{\le z^{\frac{1}{\log z}} = e}) \\ &\le x^{-\frac{1}{\log z}} \prod_{\substack{p \le z \\ p \in \mathcal{P}}} (1 + eg(p)) \\ &\le \ub{x^{-\frac{1}{\log z}}}_{= e^{-\frac{\log x}{\log z}}} \prod_{\substack{p \le z \\ p \in \mathcal{P}}} (1 + g(p))^e &&\text{($1 + ey \le (1 + y)^e$)} \end{align*} Combining the error terms, the claim follows. \end{proof} \begin{example*} Take $A = [1, x] \cap \Zbb$, $\mathcal{P} = \Pbb$. Then $g(d) = \frac{1}{d}$, $R_d = O(1)$, so the sieve gives us \begin{align*} \sieve(A, P, z) &= \pi(x, z) \\ &= (x + O(1)) \prod_{p \le z} \left( 1 - \frac{1}{p} \right) \\ &\phantom{=}+ O \left( x^{\half} (\log x)^{\half} 2^{-\frac{\log x}{4\log z}} x^{\half} + (x + O(1)) e^{-\frac{\log x}{\log z}} \prod_{p \le z} \left( 1 + \frac{1}{p} \right)^e \right) \end{align*} By \nameref{thm:merten}, \begin{align*} \prod_{p \le z} \left( 1 - \frac{1}{p} \right) &= \frac{C + o(1)}{\log z} \\ \prod_{p \le z} \left( 1 + \frac{1}{p} \right) &\le \prod_{p \le z} \left( 1 - \frac{1}{p} \right)^{-1} \\ &= \left( \frac{1}{C} + o(1) \right) \log z \end{align*} Hence, \[ \pi(x, z) = \frac{c + o(1)}{\log z} + O \left( x(\log x)^{\half} 2^{-\frac{\log x}{4 \log z}} + x e^{-\frac{\log x}{\log z}} (\log z)^e \right) .\] Hence, for $2 \le z \le \exp \left( \frac{\log x}{10 \log \log x} \right)$, \[ \pi(x, z) = \frac{c + o(1)}{\log z} x .\] This asymptotic in fact holds for $z \le x^{o(1)}$. In particular, the Erastothenes-Legendre sieve gives \[ \pi(x) \le \pi(x, z) + z \vll \frac{x}{\log x} \log \log x \] for $z = \exp \left( \frac{\log x}{10 \log \log x} \right)$. Not quite the Chebyshev bound $\pi(x) \vll \frac{x}{\log x}$. \end{example*}