%! TEX root = AN.tex % vim: tw=50 % 07/02/2025 09AM \subsection{Sieve Methods} \begin{itemize} \item General tools for estimating the number of primes (or products of a few primes in a set). \item Need information on the distribution of the set in residue classes. \end{itemize} \begin{fcdefnstar}[Sieve problem] \glssymboldefn{sieve}% Let $\mathcal{P} \subseteq \Pbb$. Let \[ P(z) = \prod_{\substack{p \in \mathcal{P} \\ p \le z}} p ,\] and let $A \subseteq \Zbb$. Denote \[ S(A, \mathcal{P}, z) = |\{n \in A : (n, P(z)) = 1\}| .\] \end{fcdefnstar} Problem: Estimate $\sieve(A, \mathcal{P}, z)$. Note that if $A \subseteq \left[ \frac{x}{2}, x \right] \cap \Zbb$, \begin{align*} \sieve(A, \Pbb, x^{\half}) &= |A \cap \Pbb| \\ \sieve(A, \Pbb, x^{\third}) &= |A \cap (\Pbb \cup \{p_1 p_2 : p_1 p_2 > x^{\third}\})| \end{align*} \glsnoundefn{sievehyp}{sieve hypothesis}{NA}% \textbf{Sieve hypothesis:} There exists a multiplicative $g : \Nbb \to [0, 1]$ and $R_d \in \Rbb$ such that \[ |\{n \in A : n \equiv 0 \pmod d\}| = g(d)|A| + R_d \] for all square-free $d$ (no repeated prime factors). \begin{example*} \phantom{} \begin{itemize} \item $A = [1, x]$, $\mathcal{P} = \Pbb$. \[ |A_d| = \left\lfloor \frac{x}{d} \right\rfloor = \frac{x}{d} + O(1) \] Then $g(d) = \frac{1}{d}$, $|R_d| \vll 1$. \[ \sieve(A, \Pbb, x^{\half}) = |\{p \in \Pbb : p \in [x^{\half}, x]\}| = \pi(x) + O(x^{\half}) .\] \item $A = \{n(n + 2) : n \le x\}$, $\mathcal{P} = \Pbb$. Let $d = p_1 \cdots p_r$, where $p_i$ are distinct primes. Then \begin{align*} |A_d| &= |\{n \le x : n \equiv 0 \text{ or } -2 \pmod{p_i} \forall i \le r\}| \\ &= \begin{cases} \frac{2^r}{d}x & \text{if $d$ odd} \\ \frac{2^{r - 1}}{d}x + O(2^r) & \text{if $d$ even} \end{cases} \end{align*} (by Chinese Remainder Theorem). \begin{align*} \sieve(A, \Pbb, (2x)^{\frac{n}{2}}) &= |\{p \in ((2x)^{\half}, x] : p + 2 \in \Pbb\}| \\ &= |\{p \le x : p + 2 \in \Pbb\}| + O(x^{\half}) \end{align*} Here, \[ g(p) = \begin{cases} \frac{1}{p} & p = 2 \\ \frac{2}{p} & p > 2 \end{cases} \] and $R_d = O(2^{w(d)})$, where $w(d)$ is the number of prime factors of $d$ (distinct). \end{itemize} \end{example*} \begin{fclemmastar}[] We have \[ \sieve(A, \mathcal{P}, z) = \sum_{d \mid P(z)} \mu(d) |A_d| .\] \end{fclemmastar} \begin{proof} Recall that \[ \indicator{n = 1} = (\mu \conv 1)(n) \] (since $\mu$ is the inverse of $1$). Hence, \begin{align*} \sieve(A, \mathcal{P}, z) &= \sum_{n \in A} \indicator{(n, P(z)) = 1} \\ &= \sum_{n \in A} \sum_{\substack{d \mid P(z) \\ d \mid n}} \mu(d) \\ &= \sum_{d \mid P(z)} \mu(a) |A_d| \qedhere \end{align*} \end{proof} \begin{example*} Let \[ \pi(x, z) = |\{n \le x : (n, P(z)) = 1\}| .\] Let $\mathcal{P} = \Pbb$. Let $A = [1, x] \cap \Zbb$. Then \[ |A_d| = \frac{x}{d} + O(1) .\] By the previous lemma, \begin{align*} \pi(x, z) &= \sieve(A, \Pbb, z) \\ &= \sum_{d \mid P(z)} \mu(d) \left( \frac{x}{d} + O(1) \right) \\ &= x \sum_{d \mid P(z)} \frac{\mu(d)}{d} + O \left( \sum_{d \mid P(z)} \ub{|\mu(d)|}_{\le 1} \right) \\ &= x \sum_{d \mid P(z)} \frac{\mu(d)}{d} + O(2^{\pi(z)}) &&\text{$P(z) = p_1 \cdots p_{\pi(2)}$} \\ &= x \prod_{p \le z} \left( 1 + \ub{\frac{\mu(p)}{p}}_{-1} \right) + O(2^{\pi(2)}) &&\text{fundamental theorem of arithmetic} \\ &= \frac{c + o(1)}{\log z} x + O(2^z) &&\text{Merten's theorem, for some $c > 0$} \end{align*} For $2 \le z \le \log x$, \[ \pi(x, z) = \frac{c + o(1)}{\log z} x .\] \end{example*} \begin{fcthmstar}[Sieve of Erastothenes -- Legendre] Assuming: - $A \subseteq [1, x] \cap \Nbb$ - $2 \le z \le x$ - Assume the Sieve Hypothesis Then: \begin{align*} &S(A, \mathcal{P}, z) \\ &= |A| \prod_{\substack{p \le 2 \\ p \in \mathcal{P}}} (1 - g(p)) + O\left(x^{\half} (\log x)^{\half}2^{-\frac{\log x}{4 \log z}} \left( \sum_{\substack{d \le x \\ d \mid P(z)}} |R_d|^2 \right)^{\frac{1}{2}} + |A| e^{\frac{\log x}{\log z}} \prod_{\substack{p \le z \\ p \in \mathcal{P}}} (1 + g(p))^e\right) \end{align*} \end{fcthmstar}