%! TEX root = AN.tex % vim: tw=50 % 05/02/2025 09AM \begin{fcthm}[Dirichlet's divisor problem] \label{dirichlet:d:problem} For $x \ge 2$, \[ \sum_{n \le x} \tauf(n) = \mathcloze{x \log x + (2\gamma - 1)x + \On(x^{1 / 2})} \] where $\eulgamma$ is \gls{eulc}. \end{fcthm} \begin{proof} We use the \nameref{dhypm}, with $y = x^{\half}$. Note that $\tau = 1 \conv 1$. Then, \begin{align*} \sum_{n \le x} \tau(n) &= \sum_{d \le x^{\half}} \sum_{m \le \frac{x}{d}} 1 + \sum_{m \le x^{\half}} \sum_{x^{\half} < d \le \frac{x}{m}} 1 \\ &= \sum_{x \le x^{\half}} \left( \frac{x}{d} + \On(1)\right) + \sum_{m \le x^{\half}} \left( \frac{x}{m} - x^{\half} + \On(1) \right) \\ &= x\sum_{d \le x^{\half}} \frac{1}{d} + x\sum_{m \le x^{\half}} \frac{1}{m} - \sum_{m \le x^{\half}} x^{\half} + \On(x^{\half}) \end{align*} Recall from Lecture 2 that \[ \sum_{d \le y} \frac{1}{d} = \log y + \eulgamma + \On \left( \frac{1}{y} \right) .\] Taking $y = x^{\half}$, the previous expression becomes \[ 2 \times \left( \half \log x + \eulgamma + \On \left( \frac{1}{x^{\half}} \right) \right) - x + \On(x^{\half}) = x \log x + (2\eulgamma - 1) x + \On(x^{\half}) . \qedhere \] \end{proof} \newpage \section{Elementary Estimates for Primes} Recall from Lecture 1: \begin{itemize} \item $\sum_p \frac{1}{p} = \infty$ (\gls{thm:eul}) \item $\pi(x) \vll \frac{x}{\log x}$ (\gls{cheb}) \end{itemize} \subsection{Merten's Theorems} \begin{fcthm}[Merten's Theorem] \label{thm:merten} Assuming: - $x \ge 3$ Thens:[(i)] - $\sum_{p \le x} \frac{\log p}{p} = \log x + \On(1)$ - $\sum_{p \le x} \frac{1}{p} = \log \log x + M + \On \left( \frac{1}{\log x} \right)$ (for some $M \in \Rbb$) - $\prod_{p \le x} \left( 1 - \frac{1}{p} \right) = \frac{c + \on(1)}{\log x}$ (for some $c > 0$) \end{fcthm} \begin{remark*} Can show $c = e^{-\eulgamma}$. \end{remark*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Let $N = \left\lfloor x \right\rfloor$. Consider $N!$. We have \begin{align*} N^N &\le N^N \\ N! &\ge N^N e^{-N} \end{align*} (the second inequality cn be proved by induction, using $\left( 1 + \frac{1}{N} \right)^N \le e$). Let $v_p(k)$ be the largest power of $p$ dividing $k$. Then \begin{align*} N! &= \prod_{p \le N} p^{v_p(N!)} &&\text{(fundamental theorem of arithmetic)} \\ \implies \log N! &= \sum_{p \le N} v_p(N!) \log p \end{align*} We have $v_p(N!) = \sum_{j = 1}^\infty \left\lfloor \frac{N}{p^j} \right\rfloor$. Indeed, \begin{align*} v_p(N!) &= \sum_{k = 1}^N v_p(k) \\ &= \sum_{k = 1}^N \sum_{j = 1}^\infty \indicator{v_p(k) \ge j} \\ &= \sum_{j = 1}^\infty \sum_{k = 1}^N \indicator{v_p(k) \ge j} \\ &= \sum_{j = 1}^\infty \left\lfloor \frac{N}{p^j} \right\rfloor \end{align*} Now, \begin{align*} \log N! &= \sum_{p \le N} \left\lfloor \frac{N}{p} \right\rfloor \log p + \sum_{p \le N} (\log p) \sum_{j = 2}^\infty \left\lfloor \frac{N}{p^j} \right\rfloor \\ &= \sum_{p \le N} \left( \frac{N}{p} + \On(1) \right) \log p + \On \left( \sum_{p \le N} \frac{\log p}{p^2} \cdot N \right) &&\text{(geometric series)} \\ &= N \sum_{p \le N} \frac{\log p}{p} + \ub{\On \left( \sum_{p \le N} \log p \right)}_{\le (\log N) \pi(N) \vll N (\glsref[cheb]{Chebyshev})} + \On(N) &&\text{(since $\sum_p \frac{\log p}{p^2} < \infty$)} \\ &= N \sum_{p \le N} \frac{\log p}{p} + \On(N) \end{align*} Combine with $\log N! = N\log N + \On(N)$ to get \[ N \log N + \On(N) = N \sum_{p \le N} \frac{\log p}{p} + \On(N) .\] Divide by $N$ to get the result. \item By \nameref{lemma:partsum}, this is \[ 1 + \On \left( \frac{1}{ \log x} \right) + \int_{2}^{x} \frac{\sum_{p \le t} \frac{\log p}{p}}{t(\log t)^2} \dd t .\] Writing $\eps(t) = \sum_{p \le t} \frac{\log p}{p} - \log t$, we get \begin{align*} &1 + \On \left( \frac{1}{\log x} \right) + \int_2^x \frac{\dd t}{t \log t} + \int_2^x \frac{\eps(t)}{t(\log t)^2} \dd t \\ &= 1 + \On \left( \frac{1}{\log x} \right) + \log \log x - \log \log 2 + \int_2^\infty \frac{\eps(t)}{t(\log t)^2} \dd t + \On \left( \int_x^\infty \frac{|\eps(t)|}{t(\log t)^2} \dd t \right) \end{align*} By part (i), \begin{align*} \int_x^\infty \frac{|\eps(t)|}{t(\log t)^2} \dd t \\ &\vll \int_x^\infty \frac{1}{t(\log t)^2} \dd t \\ &\vll \frac{1}{\log x} \end{align*} Take $M = 1 - \log \log 2 + \int_2^\infty \frac{\eps(t)}{t(\log t)^2} \dd t$. \item Use Taylor expansion \[ \log(1 - y) = -\sum_{j = 1}^\infty \frac{y^j}{j} \] to get \begin{align*} \log \prod_{p \le x} \left( 1 - \frac{1}{p} \right) &= \sum_{p \le x} \log \left( 1 - \frac{1}{p} \right) \\ &= -\sum_{p \le x} \frac{1}{p} - \sum_{p \le x} \sum_{j = 2}^\infty \frac{p - j}{j} \end{align*} Write $H = \sum_p \sum_{j = 2}^\infty \frac{p - j}{j}$. We get \begin{align*} &= -\sum_{p \le x} \frac{1}{p} - H + \On \left( \sum_{p > x} \ub{\sum_{j = 2}^\infty \frac{p - j}{j}}_{\vll p^{-2}} \right) \\ &= -\sum_{p \le x} \frac{1}{p} - H + \On \left( \frac{1}{x} \right) \\ &\stackrel{\text{(ii)}}{=} -\log \log x - H + \On \left( \frac{1}{x} \right) \end{align*} Taking exponentials, \[ \prod_{p \le x} \left( 1 - \frac{1}{p} \right) = \frac{c + \on(1)}{\log x} . \qedhere \] \end{enumerate} \end{proof}