%! TEX root = AN.tex % vim: tw=50 % 03/02/2025 09AM \begin{fcthmstar}[Euler product] \label{thm:eulprod} Assuming: - $f : \Nbb \to \Cbb$ be bounded ($|f(n)| \vll 1$) and \gls{mult} Then: \[ \Df_f(s) = \prod_p \left( 1 + \frac{f(p)}{p^2} + \frac{f(p^2)}{p^{2s}} + \cdots \right) ,\] for $\Re(s) > 1$. Furthermore, if $f$ is \gls{cmult}, then \[ \Df_f(s) = \prod_p \left( 1 - \frac{f(p)}{p^s} \right)^{-1} ,\] for $\Re(s) > 1$. \end{fcthmstar} \begin{proof} Let $N \in \Nbb$, $\Re(s) = \sigma > 1$. Let \[ D_f(s, N) = \prod_{p \le N} \left( 1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \cdots \right) .\] Note that the series defining the factors are absolutely convergent, since \[ \sum_{k = 1}^\infty \frac{|f(p^k)|}{|p^{ks}|} \vll \sum_{k = 1}^\infty \frac{1}{p^{ks}} < \infty \] (geometric series). Therefore, multiplying out, \[ D_f(s, N) = \sum_{n = 1}^\infty a(n, N) f(n)n^{-s} \] where \[ a(n, N) = \#\{\text{ways to write $n$ as a product of prime powers, where the primes are $\le N$}\} .\] The fundamental theorem of arithmetic tells us that $a(n, N) \in \{0, 1\}$ and $a(n, N) = 1$ for $n \le N$. Now, \begin{align*} |\Df_f(S) - D_f(s, N)| &\le \sum_{n = N + 1}^\infty |f(n)| |n^{-s}| \\ &\vll \sum_{n = N + 1}^\infty n^{-\sigma} \\ &\stackrel{N \to \infty}{\longrightarrow} 0 \end{align*} (since $\sum_{n = 1}^\infty n^{-\sigma} < \infty$). Hence $\Df_f(s) = \lim_{N \to \infty} \Df_f(s, N)$. Finally, for $f$ \gls{cmult}, use geometric formula: \[ \sum_{k = 1}^\infty \frac{f(p)^k}{p^{ks}} = \frac{1}{1 - \frac{f(p)}{p^s}} . \qedhere \] \end{proof} \begin{fclemmastar}[] Assuming: - $f, g : \Nbb \to \Cbb$ - $|f(n)|, |g(n)| \le n^{o(1)}$ Then: \[ \Df_{f \conv g}(s) = \Df_f(s) \Df_g(s) \] for $\Re(s) > 1$. \end{fclemmastar} \begin{proof} We know $\Df_f(s)$ and $\Df_g(s)$ are absolutely convergent, so can expand out the product. \begin{align*} \Df_f(s) \Df_g(s) &= \sum_{a, b = 1}^\infty f(a) g(b) (ab)^{-s} &= \sum_{n = 1}^\infty \sum_{n = ab} f(a)g(b) n^{-s} \\ &= \sum_{n = 1}^\infty (f \conv g)(n) n^{-s} \\ &= \Df_{f \conv g}(s) \qedhere \end{align*} \end{proof} \begin{fcdefnstar}[Riemann zeta function] \glssymboldefn{riemannzeta}% For $\Re(s) > 1$, define \[ \zeta(s) = \sum_{n = 1}^\infty n^{-s} .\] \end{fcdefnstar} \begin{example*} \phantom{} \begin{itemize} \item $\sum_{n = 1}^\infty \frac{\tauf(n)}{n^s} = \rzeta(s)^2$ for $\Re(s) > 1$ (since $\tauf = 1 \conv 1$). \item $\sum_{n = 1}^\infty \frac{\mob(n)}{n^s} = \frac{1}{\rzeta(s)}$ for $\Re(s) > 1$ (since $\mob$ is the Dirichlet inverse of $1$, so $\mob \conv 1 = \dId$). \item $\rzeta'(s) = -\sum_{n = 1}^\infty \frac{\log n}{n^s}$ for $\Re(s) > 1$, since $\frac{\dd}{\dd s} n^{-s} = -(\log n) n^{-s}$. Can differentiate termwise, since if $F_n$ analytic and $F_n \to F$ uniformly, then $F$ is analytic and $F_n' \to F'$. We know that $\sum_{n = 1}^\infty f(n) n^{-s}$ converges uniformly for $\Re(s) > 1$ if $|f(n)| \le n^{o(1)}$. \item $\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n = 1}^\infty \frac{\vman(n)}{n^s}$ for $\Re(s) > 1$. This is because $-\log = -1 \conv \vman$ -- see the definition of the \gls{vman}. \end{itemize} \end{example*} \subsubsection*{Dirichlet hyperbola method} Problem: How many lattice points $(a, b) \in \Nbb^2$ satisfy $ab \le x$? \begin{center} \includegraphics[width=0.6\linewidth]{images/6a87e90233c04622.png} \end{center} Note that this number is $\sum_{n \le x} \tauf(n) = \sum_{ab \le x} 1$. Dirichlet proved that for $x \ge 2$, \[ \sum_{n \le x} \tauf(n) = \mathcloze{x \log x + (2\gamma - 1)x + \On(x^{1 / 2})} \] where $\eulgamma$ is \gls{eulc}. We will see a proof of this shortly. Conjecture: Can have $\On_\eps(x^{\frac{1}{4} + \eps})$. Current best exponent is $0.314$. First, we prove a lemma: \begin{fclemmastar}[Dirichlet hyperbola method] \label{dhypm} Assuming: - $f, g : \Nbb \to \Cbb$ - $x \ge y \ge 1$ Then: \[ \sum_{n \le x} (f \conv g)(n) = \sum_{d \le y} f(d) \sum_{m \le \frac{x}{d}} g(m) + \sum_{m \le \frac{x}{y}} g(m) \sum_{y < d \le \frac{x}{m}} f(d) .\] \end{fclemmastar} \begin{proof} $\sum_{n \le x} (f \conv g)(n) = \sum_{dm \le x} f(d) g(m)$. Split this sum into parts with $d \le y$ and $d > y$ to get the conclusion. \end{proof}