%! TEX root = AN.tex % vim: tw=50 % 31/01/2025 09AM \begin{fclemmastar}[] \glsref[mult]{Multiplicative} \glspl{af} form an abelian group with $\conv$. Moreover, for \gls{cmult} $f$, the Dirichlet inverse is $\mu f$. \end{fclemmastar} \begin{proof} For the first part, suffices to show closedness. Let $f, g : \Nbb \to \Cbb$ be \gls{mult}, and $m, n$ coprime. If $mn = ab$, we can write $a = a_1 a_2$, $b = b_1 b_2$ where $a_1 = (a, m)$, $a_2 = (a, n)$, $b_1 = (b, m)$ and $b_2 = (b, n)$. Therefore we have: \begin{align*} (f \conv g)(mn) &= \sum_{mn = ab} f(a) g(b) \\ &= \sum_{\substack{m = a_1 b_1 \\ n = a_2 b_2}} f(a_1 a_2) g(b_1 b_2) &&\text{(above observation)} \\ &= \sum_{\substack{m = a_1 b_1 \\ n = a_2 b_2}} f(a_1) f(a_2) g(b_1) g(b_2) &&\text{(by multiplicativity)} \\ &= (f \conv g)(m) (f \conv g)(n) \end{align*} (also need to check that inverses are \gls{mult}). Now, remains to show that for \gls{cmult} $f$, $f \conv \mu f = \dId$. Note that $f \conv \mu f$ is \gls{mult} by the first part. So enough to show $(f \conv \mu f)(p^k) = \dId(p^k)$ for prime powers $p^k$. Calculate: \begin{align*} f \conv \mu f(p) &= f(p) + \mu f(p) \\ &= f(p) - f(p) \\ &= 0 \\ &= \dId(p) \end{align*} and for $k \ge 2$: \begin{align*} f \conv \mu f(p^k) &= f(p^k) + \mu f(p) f(p^{k - 1}) \\ &= f(p^k) - f(p) f(p^{k - 1}) \\ &= f(p)^k - f(p)f(p)^{k - 1} \\ &= 0 \\ &= \dId(p^k) \qedhere \end{align*} \end{proof} \begin{example*} $\tauf_k(n) = \sum_{n = n_1 \cdots n_k} 1$. Then \[ \tauf_k = \ub{1 \conv 1 \conv \cdots \conv 1}_{\text{$k$ times}} .\] So $\tauf_k$ is \gls{mult} by the previous result. \end{example*} \begin{fcdefnstar}[von Mangoldt function] \glssymboldefn{vman}% \glsnoundefn{vman}{von Mangoldt function}{NA}% The \emph{von Mangoldt function} $\Lambda : \Nbb \to \Rbb$ is \[ \Lambda(n) = \begin{cases} \log p & \text{if $n = p^k$ for some prime $p$} \\ 0 & \text{otherwise} \end{cases} \] Then $\log = 1 \conv \Lambda$ since \[ \log n = \log \prod_{p \mid n} p^{\alpha_p(n)} = \sum_{p \mid n} \alpha_p(n) \log p = 1 \conv \Lambda(n) .\] Since $\mob$ is the inverse of $1$, we have \[ \log \conv \mob = 1 \conv \Lambda \conv \mob = \Lambda \conv 1 \conv \mob = \Lambda \conv \dId = \Lambda .\] \end{fcdefnstar} \subsection{Dirichlet Series} For a sequence $(a_n)_{n \in \Nbb}$, we want to associate a generating function that gives information of $(a_n)_{n \in \Nbb}$. Might consider \[ (a_n)_{n \in \Nbb} \leftrightarrow \sum_{n = 1}^{\infty} a_n x^n .\] If we do this, then $\sum_p x^p$ is hard to control. So this is not very useful. The following series has nicer number-theoretic properties: \begin{fcdefnstar}[Formal series] \glssymboldefn{Df}% For $f : \Nbb \to \Cbb$, define a (formal) series \[ D_f(s) = \sum_{n = 1}^{\infty} f(n) n^{-s} \] for $s \in \Cbb$. \end{fcdefnstar} \begin{fclemmastar}[] Assuming: - $f : \Nbb \to \Cbb$ satisfying $|f(n)| \le n^{o(1)}$ Then: $\Df_f(s)$ converges absolutely for $\Re(s) > 1$ and defines an analytic function for $\Re(s) > 1$. \end{fclemmastar} \begin{proof} Let $\eps > 0$ (fixed), $n \in \Nbb$ and $\Re(s) > 1 + 2\eps$. Then \begin{align*} \sum_{n = N}^{\infty} |f(n) n^{-s}| &= \sum_{n = N}^\infty |f(n)| n^{-\Re(s)} \\ &\vll \sum_{n = N}^\infty n^{\eps - \Re(s)} \\ &\le \sum_{n = N}^\infty n^{-1 - \eps} \\ &\le N^{-1 - \eps} + \sum_{n = N + 1}^\infty \int_{n - 1}^n t^{-1 - \eps} \dd t \\ &\le N^{-1 - \eps} + \int_N^\infty t^{-1 - \eps} \dd t \\ &\vll N^{-\eps} \end{align*} Hence we have absolute convergence for $\Re(s) > 1 + 2\eps$. Also, $\Df_f(s)$ is a uniform limit of the functions $\sum_{n = 1}^N f(n) n^{-s}$. From complex analysis, a uniform limit of analytic functions is analytic. Hence $\Df_f(s)$ is analytic for $\Re(s) > 1 + 2\eps$. Now let $\eps \to 0$. \end{proof}