%! TEX root = AN.tex % vim: tw=50 % 29/01/2025 09AM \begin{fclemmastar}[] \glsnoundefn{eulc}{Euler's constant}{NA}% \glssymboldefn{gamma}% If \cloze[1]{$x \ge 1$}, then \[ \sum_{n \le x} \frac{1}{n} = \log x + \mathcloze[1]{\gamma + \On \left( \frac{1}{x} \right)} ,\] where \cloze[1]{$\gamma \in \Rbb$} \cloze[2]{is Euler's constant, which is given by $\gamma = \lim_{N \to \infty} \sum_{k = 1}^N \frac{1}{k} - \log N$.} \end{fclemmastar} \begin{proof} Apply \nameref{lemma:partsum} with $a_n = 1$, $f(t) = \frac{1}{t}$, $y = \half$. Clearly $A(t) = \left\lfloor t \right\rfloor$. Then, \begin{align*} \sum_{n \le x} \frac{1}{n} &= \frac{\left\lfloor x \right\rfloor}{x} + \int_1^x \frac{\left\lfloor t \right\rfloor}{t^2} \dd t \\ &= \frac{x + \On(1)}{x} + \int_1^x \frac{t - \{t\}}{t^2} \dd t \\ &= 1 + \On \left( \frac{1}{x} \right) + \log x - \int_1^x \frac{\{t\}}{t^2} \dd t \\ &= 1 + \log x - \int_1^\infty \frac{\{t\}}{t^2} \dd t + \On \left( \frac{1}{x} \right) \end{align*} The last equality is true since $\int_x^\infty \frac{\{t\}}{t^2} \dd t \le \int_x^\infty \frac{1}{t^2} \dd t = \frac{1}{x}$. Let $\gamma = 1 - \int_1^\infty \frac{\{t\}}{t^2} \dd t$. Then we have the asymptotic equation as desired. Taking $x \to \infty$ in the formula, we see that $\gamma$ is equal to the formula for Euler's constant, as desired. \end{proof} \begin{fclemmastar}[] For $x \ge 1$, \[ \mathcloze{\sum_{p \le x} \frac{1}{p}} = \mathcloze{\int_1^x \frac{\pi(t)}{t^2} \dd t + \On(1)} .\] \end{fclemmastar} \begin{proof} Apply \cref{lemma:partsum} with $a_n = \indicator{\Pbb}(n)$ (where $\Pbb$ is the set of primes), $f(t) = \frac{1}{t}$, and $y = 1$. We get $A(t) = \pi(t)$, and then \begin{align*} \sum_{p \le x} \frac{1}{p} &= \frac{\pi(x)}{x} + \int_1^x \frac{\pi(t)}{t^2} \dd t \\ &= \int_1^x \frac{\pi(t)}{t^2} \dd t + \On(1) \qedhere \end{align*} \end{proof} \subsection{Arithmetic Functions and Dirichlet convolution} \begin{fcdefnstar}[Arithmetic function] \glsnoundefn{af}{arithmetic function}{arithmetic functions}% An \emph{arithmetic function} is a function $f : \Nbb \to \Cbb$. \end{fcdefnstar} \begin{fcdefnstar}[Multiplicative] \glsadjdefn{mult}{multiplicative}{\gls{af}}% \glsadjdefn{cmult}{completely multiplicative}{\gls{af}}% An \gls{af} $f$ is \emph{multiplicative} if $f(1) = 1$ and $f(mn) = f(m) f(n)$ whenever $m, n \in \Nbb$ are coprime. Moreover, $f$ is \emph{completely multiplicative} if $f(mn) = f(m) f(n)$ for all $m, n$. \end{fcdefnstar} \begin{example*} \phantom{} \begin{itemize} \item $f(n) = n^s$ for $s \in \Cbb$ is \gls{cmult}. \item \glssymboldefn{mob}% M\"obius function \[ \mu(n) = \begin{cases} 1 & n = 1 \\ (-1)^k & \text{if $n$ is a product of $k$ distinct primes} \\ 0 & \text{$n$ is divisible by a square of a prime} \end{cases} \] This is \gls{mult}: \begin{itemize} \item If $\mu(mn) = 0$ and $m$, $n$ are coprime, then we must have had at least one of $\mu(m) = 0$ or $\mu(n) = 0$. \item If $\mu(mn) = 1$, then say $m$ is a product of $k$ distinct primes and $n$ is a product of $l$ distinct primes. Then $\mu(mn) = (-1)^{k + l} = (-1)^k (-1)^l = \mu(m)\mu(n)$. \item \glssymboldefn{tau}% $\tau(n) = \sum_{n = ab} 1$ (divisor function) and $\tau_k(n) = \sum_{n = n_1 n_2 \cdots n_k} 1$ (generalised divisor function). $\tau$ and $\tau_k$ are \gls{mult}. \end{itemize} \end{itemize} \end{example*} On the space of \glspl{af}, we have operations: \begin{align*} (f + g)(n) &= f(n) + g(n) \\ (fg)(n) &= f(n) g(n) \\ (f * g)(n) &= \text{Dirichlet convolution} \end{align*} \begin{fcdefnstar}[Dirichlet convolution] \glssymboldefn{*}% For $f, g : \Nbb \to \Cbb$, we define \[ (f * g)(n) = \sum_{d \mid n} f(d) g \left( \frac{n}{d} \right) ,\] where $\sum_{d \mid n}$ means sum over the divisors of $n$. \end{fcdefnstar} \begin{fclemma}[] The space of \glspl{af} with \cloze{operations $+$, $\conv$} is a commutative ring. \end{fclemma} \begin{proof} Since \glspl{af} with $+$ form an abelian group, it suffices to show: \begin{enumerate}[(i)] \item $(f \conv g) \conv h = f \conv (g \conv h)$ \item $f \conv g = g \conv f$ \item $f \conv I = f$ \item $f \conv (g + h) = f \conv g + f \conv h$ \end{enumerate} Proofs: \begin{enumerate}[(i)] \item Follows from $(f \conv g)(n) = \sum_{n = ab} f(a) g(b)$. \item Follows from $(f \conv g)(n) = \sum_{n = ab} f(a) g(b)$. \item \glssymboldefn{I}% Take \[ I(n) = \begin{cases} 1 & n = 1 \\ 0 & n \neq 0 \end{cases} .\] Then one can check that $f \conv I = f$. \item From definition. \qedhere \end{enumerate} \end{proof} \begin{fclemmastar}[] The set of \glspl{af} $f$ with $f(1) \neq 0$ form an abelian group with operation $\conv$. \end{fclemmastar} \begin{proof} Need $g$ such that $f \conv g = \dId$. \[ (f \conv g)(1) = f(1) g(1) = 1 \implies g(1) = \frac{1}{f(1)} .\] Assume $g(m)$ defined for $m < n$. We will defined $g(n)$. \begin{align*} (f \conv g)(n) &= g(n) f(1) + \sum_{\substack{d \mid n \\ d \neq 1}} f(d) g \left( \frac{n}{d} \right) \\ \implies g(n) &= -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d \neq 1}} f(d) g \ub{\left( \frac{n}{d} \right)}_{< n} \qedhere \end{align*} \end{proof}