%! TEX root = AN.tex % vim: tw=50 % 27/01/2025 09AM So for $x \ge 2$ and a suitable large enough constant $c'$, we have \[ \sum_{p \le x} \le (\log 4) x + c'(\log x)^2 .\] Hence \begin{align*} \sum_{\frac{x}{(\log x)^2} < p \le x} \log p &\le (\log 4) x + c'(\log x)^2 \\ \implies \log \frac{x}{(\log x)^2} \left( \pi(x) - \pi \left( \frac{x}{(\log x)^2} \right) \right) &\le (\log 4) x + c'(\log x)^2 \\ \implies \pi(x) &\le \frac{x}{(\log x)^2} + (\log 4) \frac{x}{\log \frac{x}{(\log x)^2}} + c' \frac{(\log x)^2}{\log \frac{x}{(\log x)^2}} \\ &\le (\log 4 + \eps) \frac{x}{\log x} \end{align*} for any $\eps$, as long as $x \ge x(\eps)$. Take $\eps = 1$. Choose $c > 0$ large enough. \end{proof} \subsection{Asymptotic Notation} \begin{fcdefn}[Big $O$ and little $o$ notation] \glssymboldefn{o}% Let $f, g, h : S \to \Cbb$, $S \subseteq \Cbb$. Write $f(x) = O(g(x))$ if there is $c > 0$ such that $|f(x)| \le c|g(x)|$ for all $x \in S$. Write $f(x) = o(g(x))$ if for any $\eps > 0$ there is $x_\eps > 0$ such that $|f(x)| \le \eps|g(x)|$ for $x \in S$, $|x| \ge x_\eps$. Write $f(x) = g(x) + O(h(x))$ if $f(x) - g(x) = O(h(x))$ and write $f(x) = g(x) + o(h(x))$ if $f(x) - g(x) = o(h(x))$. \end{fcdefn} \begin{fcdefn}[Vinogradov notation] \glssymboldefn{vn}% Let $f, g, h : S \to \Cbb$, $S \subseteq \Cbb$. Write $f(x) \ll g(x)$ or $g(x) \gg f(x)$ if $f(x) = \On(g(x))$. \end{fcdefn} \begin{example*} \phantom{} \begin{itemize} \item $(\log x)^100 \vll \exp(\sqrt{\log x}) \vll x^{\frac{1}{100}}$ ($x \le 1$), since $\lim_{x \to \infty} \frac{(\log x)^{100}}{\exp(\sqrt{\log x})} = 0$, $\lim_{x \to \infty} \frac{\exp(\sqrt{\log x})}{x^{\frac{1}{100}}} = 0$. \item $100x + 100 \vll x \vll \frac{x}{100}$ (for $x \ge 1$). \item $e^x = 1 + x + \On(x^2)$ for $x \in [-10, 10]$, since $e^x = 1 + x + \sum_{n = 2}^{\infty} \frac{x^n}{n!}$. \item $\left\lfloor x \right\rfloor = x + \On(1)$ for $x \in \Rbb$ (since $\left\lfloor x\right\rfloor \in (x - 1, x]$). \item $\frac{x + 1}{x} = 1 + \on(1)$ (for $x \ge 1$). \end{itemize} \end{example*} \begin{lemma*} Let $f, g, h, u : S \to \Cbb$. \begin{enumerate}[(i)] \item If $f(x) = \On(g(x))$ and $g(x) = \On(h(x))$, then $f(x) = \On(h(x))$ (transitivity). \item If $f(x) = \On(h(x))$ and $g(x) = \On(u(x))$, then $f(x) + g(x) = \On(|h(x)| + |u(x)|)$. \item If $f(x) = \On(h(x))$ and $g(x) = \On(u(x))$, then $f(x) g(x) = \On(h(x) u(x))$. \end{enumerate} \end{lemma*} \begin{proof} Follows from the definition in a straightforward way. Example: \begin{enumerate}[(i)] \setcounter{enumi}{2} \item $|f(x)| \le c_1 |h(x)|$, $|g(x)| \le c_2|u(x)|$. Then $|f(x)g(x)| \le c_1 c_2|h(x)u(x)|$, so $f(x)g(x) = \On(h(x)u(x))$. \qedhere \end{enumerate} \end{proof} \subsection{Partial Summation} \begin{fclemma}[Partial Summation] \label{lemma:partsum} Assuming: - $(a_n)_{n \in \Nbb}$ are complex numbers - $x \ge y \ge 0$ - $f : [y, x] \to \Cbb$ is continuously differentiable Then: \[ \sum_{y < n \le x} a_n f(n) = A(x) f(x) - A(y) f(y) - \int_y^x A(t) f'(t) \dd t ,\] where for $t \ge 1$, we define \[ A(t) = \sum_{n \le t} a_n = \sum_{n = 1}^{\lfloor t \rfloor} a_n .\] \end{fclemma} \begin{proof} It suffices to prove the $y = 0$ case, since then \[ \sum_{y < n \le x} a_n f(n) = \sum_{0 < n \le x} a_n f(n) - \sum_{0 < n \le y} a_n f(n) .\] Suppose $y = 0$. By the fundamental theorem of calculus, \[ f(n) = f(x) - \int_n^x f'(t) \dd t = \int_0^x f'(t) \indicator{[n, x]} (t) \dd t .\] Summing over $n \le x$, we get \begin{align*} \sum_{n \le x} a_n f(n) &= A(x) f(x) - \int_0^x f'(t) \left( \sum_{n \le x} \indicator{[n, x]}(t) a_n \right) \dd t \\ &= A(x) f(x) - \int_0^x f'(t) A(t) \dd t \qedhere \end{align*} \end{proof}