%! TEX root = AN.tex % vim: tw=50 % 28/02/2025 09AM % No lecture next Wednesday. % Additional lecture on Friday, 21 March. % Correction from example class: % The final lemma: $E(x) \vll x^{\half} \log x$. \subsection{Zero-free region} \begin{fcprop}[] Assuming: - $\sigma > 1$ and $t \in \Rbb$ Then: \[ 3 \frac{\zeta'}{\zeta}(\sigma) + 4\Re \left( \frac{\zeta'}{\zeta}(\sigma + it) \right) + \Re \left( \frac{\zeta'}{\zeta}(\sigma + 2it) \right) \le 0 \tag{$**$} \label{lec16eq1} .\] \end{fcprop} \begin{proof} Recall that \[ \frac{\zeta'}{\zeta}(s) = -\sum_{n = 1}^{\infty} \frac{\vman(n)}{n^s} ,\] where $\vman$ is the \gls{vman} function, and $\Re(s) > 1$. Taking linear combinations, the LHS of \eqref{lec16eq1} becomes \[ -\sum_{n = 1}^{\infty} \vman(n) \frac{3 + 4\Re(n^{it}) + \Re(n^{-2it})}{n^\sigma} = -\sum_{n = 1}^{\infty} \vman(n) \frac{3 + 4\cos(t\log n) + \cos(2 + \log n)}{n^\sigma} \] ($\Re(n^{iu}) = \cos(u \log n)$). We are done by the inequality: \[ 3 + 4\cos \alpha + \cos 2\alpha = 2(1 + \cos \alpha)^2 \ge 0 \] for $\alpha \in \Rbb$. \end{proof} \begin{fcthm}[Zero-free region] There is a constant $c > 0$ such that \cloze{$\zeta(\sigma + it) \neq 0$} whenever \cloze{$\sigma > 1 - \frac{c}{\log(|t| + 2)}$}. In particular, \cloze{$\zeta(s) \neq 0$ for $\Re (s) = 1$.} \end{fcthm} \begin{center} \includegraphics[width=0.6\linewidth]{images/91b5f1b6d73f4841.png} \end{center} \begin{proof} Let $\sigma \in [1, 2]$ and $t \in \Rbb$. Suppose $\zeta(\beta + it)$. uwe know that $\beta \le 1$. We know that $\zeta$ has no zeroes in some ball $B(1, r)$ for some $r > 0$ (otherwise the entire function $(s - 1) \zeta(s)$ would have an accumulation point for its zeros). Choosing $c > 0$ small enough, we can assume that $|t| \ge r$. By the key inequality for $\frac{\zeta'}{\zeta}$, \[ 3 \frac{\zeta'}{\zeta}(\sigma) + 4\Re \left( \frac{\zeta'}{\zeta}(\sigma + it) \right). + \Re \left( \frac{\zeta'}{\zeta}(\sigma + 2it) \right). \le 0 .\] Apply partial fraction decomposition of $\frac{\zeta'}{\zeta}$. So \[ \frac{\zeta'}{\zeta}(s) = -\frac{1}{s - 1} + \sum_{|s - \rho| \le \frac{1}{10}} \frac{1}{s - \rho} + O(\log(|t| + 2)) \tag{$**$} \label{lec16eq2} .\] ($t = \Im(s)$). Since $\Re(\rho) \le 1$ for any zero $\rho$, \[ \Re \frac{1}{\sigma + iu - \rho} = \frac{\sigma - \Re(\rho)}{|\sigma + iu - \rho|^2} \ge 0 \] ($\sigma > 1$). Discarding terms, we get \[ -\frac{3}{\sigma - 1} + \frac{4}{\sigma - \beta} \le C\log(|t| + 2) .\] Take $\sigma = 1 + \frac{sc}{\log(|t| + 2)}$, and assume $\beta \ge 1 - \frac{c}{\log(|t| + 2)}$ to get \[ -3 \frac{\log(|t| + 2)}{5c} + 4 \frac{\log(|t| + 2)}{6c} \le C(\log|t| + 2) .\] Take $c = \frac{1}{16C}$ to get a contradiction. \end{proof} \begin{fcthm}[Bounding $zeta' / zeta$] Assuming: - $c > 0$ sufficiently small - $T \ge 0$ - $\Re(s) \ge -10$ - $|\Im(s)| \in [T, T + 1]$ - $s$ is at least distance $\frac{c}{\log(T + 2)}$ away from any zero or pole Then: \[ \left| \frac{\zeta'(s)}{\zeta(s)} \right| \vll_c (\log(T + 2))^2 .\] \end{fcthm} \begin{proof} If $s = \sigma + it$ with $\sigma > 10$, then \begin{align*} \left| \frac{\zeta'(s)}{\zeta(s)} \right| &= \left| \sum_{n = 1}^{\infty} \vman(n) n^{-s} \right| \\ &\le \sum_{n = 1}^{\infty} \vman(n) n^{-\sigma} \\ &\vll 1 \end{align*} Assume then that $\Re(s) \in [-10, 10]$. Apply \eqref{lec16eq2}. Each term satisfies \begin{align*} \frac{1}{|s - \rho|} &\le \frac{\log(T + 2)}{c} \\ \frac{1}{|s - 1|} &\le \frac{\log(T + 2)}{c} \end{align*} We know that there are $O(\log(T + 2))$ zeros with multiplicity having imaginary part $\in [T - 2, T + 2]$. The claim follows from triangle inequality. \end{proof} TODO