%! TEX root = AN.tex % vim: tw=50 % 26/02/2025 09AM \begin{fclemma}[Landau] \label{lemma:landau} Assuming: - $z_0 \in \Cbb$ and $r > 0$ - $f$ analytic in $B(z_0, r)$ - for some $M > 1$ we have $|f(z)| < e^M |f(z_0)|$ for all $z \in B(z_0, r)$ Then: for $z \in B(z_0, r / 4)$, \[ \left| \frac{f'(z)}{f(z)} - \sum_{\rho \in Z} \frac{1}{z - \rho} \right| \le \frac{96 M}{r} ,\] where $Z$ is the set of zeroes of $f$ in $\ol{B(z_0, r / 2)}$, counted with multiplicities. \end{fclemma} \begin{note*} If $f$ is a polynomial, we can factorise \[ f(z) = a \prod_\rho (z - \rho) ,\] and then \begin{align*} \frac{f'(z)}{f(z)} &= (\log f(z))' \\ &= \left( \log a + \sum_\rho \log(z - \rho) \right)' \\ &= \sum_\rho \frac{1}{z - \rho} \end{align*} \end{note*} \begin{proof} Let \[ g(z) = \frac{f(z)}{\prod_{\rho \in Z} (z - \rho)} .\] Then $g$ is analytic and non-vanishing in $\ol{B(z_0, r/2)}$. Note that \[ \frac{g'(z)}{g(z)} = \frac{f'(z)}{f(z)} - \sum_{\rho \in Z} \frac{1}{z - \rho} \] ($\frac{(f_1 - f_n)'}{f_1 - f_n} = \sum_{i = 1}^n \frac{f_1'}{f_1}$). Hence, it suffices to prove \[ \left| \frac{g'(z)}{g(z)} \right| \le \frac{96 M}{r} \] for $z \in B(z_0, r / 4)$. Write \[ h(z) = \frac{g(z_0 + z)}{g(z_0)} .\] Then $h$ is analytic and non-vanishing in $\ol{B(0, r / 2)}$, and $h(0) = 1$. We want to show \[ \left| \frac{h'(z)}{h(z)} \right| \le \frac{96M}{r} \] for $z \in B(0, r / 4)$. For all $z_0 \in \partial B(0, r)$ we have \[ |h(z)| = \left| \frac{f(z_0 + z)}{f(z_0)} \prod_{\rho \in Z} \frac{z_0 - \rho}{z_0 + z - \rho} \right| \le \left| \frac{f(z_0 + z)}{f(z_0)} \right| < e^M \] since \[ |z_0 - \rho| \le \frac{r}{2} = r - \frac{r}{2} \le |z_0 + z - \rho| \] for $z \in \partial B(0, r)$. By the maximum modulus principle, $|h(z)| < e^M$ for $z \in \ol{B(0, r / 2)}$, so \[ \Re \log h(z) = \log |h(z)| < M .\] By the \nameref{thm:borel-cara} with radii $\frac{3r}{8}$, $\frac{r}{4}$ we have for for $z \in B(0, 3r/8)$, \[ |\log h(z)| \le \frac{2 \frac{r}{4}}{\frac{3r}{8} - \frac{r}{4}} M = 4M .\] Now, for $z \in B(0, r / 4)$, Cauchy's theorem gives us \begin{align*} \left| \frac{h'(z)}{h(z)} \right| &= \left| \frac{1}{2\pi i} \int_{\partial B(0, 3r/8)} \frac{\log h(w)}{(z - w)^2} \dd w \right| \\ &\le \frac{1}{2\pi} \cdot 2\pi \frac{3r}{8} 4M \left( \frac{3r}{8} - \frac{r}{4} \right)^{-2} \\ &= \frac{96M}{r} \qedhere \end{align*} \end{proof} \begin{fcthm}[Partial Fraction approximation of $zeta' / zeta$] \phantom{} \begin{enumerate}[(i)] \item Let $s = \sigma + it$ with $|\sigma| \le 10$, $s \neq 1$ and $\zeta(s) \neq 0$. Then \[ \frac{\zeta'(s)}{\zeta(s)} = -\frac{1}{s - 1} + \sum_{|\rho - s| \le \frac{1}{10}} \frac{1}{s - \rho} + O(\log(|t| + 2)) .\] where the sum is over the zeroes $\rho$ of $\zeta$ counted with multiplicity. \item For any $T \ge 0$, there are $\vll \log (T + 2)$ many zeroes $\rho$ of $\zeta$ (counted with multiplicity) with $|\Im(\rho)| \in [T, T + 1]$. \end{enumerate} \end{fcthm} \begin{proof} We apply \nameref{lemma:landau} with $z_0 = 2 + it$, $r = 50$, with $f(s) = (s - 1) \zeta(s)$. By the lemma on polynomial growth of $\zeta$ on vertical lines, for $\sigma + it \in B(z_0, 50)$, we have \begin{align*} |f(s)| &\le C(|t| + 52)(|t\ + 2)^{50} \\ &\le C \exp(51 \log (|t| + 52)) \\ &\vll C \exp(51 \log (|t| + 52)) |f(z)| \end{align*} ($|\zeta(z + it)| \asymp 1$). Let $s \in B \left( z_0, \frac{25}{2} \right)$. Then \nameref{lemma:landau} gives us \begin{align*} \frac{f'(s)}{f(s)} &= \frac{1}{s - 1} + \frac{\zeta'(s)}{\zeta(s)} \\ &= \sum_{|\rho - z_0| \le 2S} \frac{1}{s - \rho} + O (\log(|t| + 2)) \tag{$*$} \label{lec15eq1} \end{align*} Since $B \left( z_0, \frac{25}{2} \right)$ contains all the points $s = \sigma + it$ with $|\sigma| \le 10$, it suffices to show \[ \sum_{\substack{|\rho - z_0| \le 25 \\ |\rho - s| > \frac{1}{10}}} \frac{1}{s - \rho} = O(\log(|t| + 2)) \tag{$**$} \label{lec15eq2} .\] Substituting $s = z_0$ in \eqref{lec15eq1}, we get \begin{align*} \sum_{|\rho - z_0| \le 25} \frac{1}{z_0 - \rho} &= O \left( \left| \frac{\zeta'(z_0)}{\zeta(z_0)} \right| + 1 + \log(|t| + 2) \right) \\ &= O(\log(|t| + 2)) \end{align*} since \begin{align*} \left| \frac{\zeta'(2 + it)}{\zeta(2 + it)} \right| &= \left| \sum_{n = 1}^\infty \vman(n) n^{-2 + it} \right| \\ &\le \sum_{n = 1}^\infty \vman(n) n^{-2} \\ &= -\frac{\zeta(2)}{\zeta(2)} \end{align*} Taking real parts, \[ \sum_{|\rho - z_0| \le 25} \frac{2 - \Re(\rho)}{|z_0 - \rho|^2} = O(\log(|t| + 2)) .\] Since $\Re(\rho) \le 1$, \[ \sum_{|\rho - z_0| \le 25} \frac{1}{|z_0 - \rho|^2} = O(\log(|t| + 2)) .\] This proves part (ii). It gives also \eqref{lec15eq2} since the sum there contains $O(\log(|t| + 2))$ zeros. \end{proof}