%! TEX root = AN.tex % vim: tw=50 % 24/02/2025 09AM \begin{fcthm}[Functional equation for $zeta$] Assuming: - $\xi(s) = \half s(s - 1) \pi^{-s/2} \Gamma \left( \frac{s}{s} \right) \zeta(s)$ for $s \in \Cbb$ Then: $\xi$ is an entire function and $\xi(s) = \xi(1 - s)$ for $s \in \Cbb$. Hence \[ \pi^{-s / 2} \Gamma \left( \frac{s}{2} \right) \zeta(s) = \pi^{-\frac{1 - s}{2}} \Gamma \left( \frac{1 - s}{2} \right) \zeta(1 - s) \] for $s \in \Cbb \setminus \{0, 1\}$. \end{fcthm} \begin{proof} Let $\Re(s) > 1$. Then, \[ \Gamma \left( \frac{s}{2} \right) = \int_0^\infty t^{\frac{s}{2} - 1} e^{-t} \dd t .\] Make the change of variables $f = \pi n^2 u$ to get \[ \Gamma \left( \frac{s}{2} \right) = \pi^{s/2} n^s \int_0^\infty u^{\frac{s}{2} - 1} e^{-\pi n^2 u} \dd u .\] Hence \[ \pi^{-\frac{s}{2}} n^{-s} \Gamma \left( \frac{s}{2} \right) = \int_0^\infty u^{\frac{s}{2} - 1} e^{-\pi n^2 u} \dd u .\] Summing over $n \in \Nbb$ and using Fubini, \begin{align*} \pi^{-\frac{s}{2}} \Gamma \left( \frac{s}{2} \right) \zeta(s) &= \sum_{n = 1}^{\infty} \int_0^\infty u^{\frac{s}{2} - 1} e^{-\pi n^2 u} \dd u \\ &= \half \int_0^\infty u^{\frac{s}{2} - 1} (\theta(u) - 1) \dd u &&\theta(u) = \sum_{n = -\infty}^\infty e^{-\pi n^2 u} \\ &= \half \int_0^1 u^{\frac{s}{2} - 1} (\theta(u) - 1) \dd u + \half \int_1^\infty u^{\frac{s}{2} - 1} (\theta(u) - 1) \dd u \tag{$*$} \label{lec13eq1} \end{align*} By the functional equation \[ \theta(u) = \frac{1}{\sqrt{u}} \theta \left( \frac{1}{u} \right) ,\] we have \begin{align*} \int_0^1 u^{\frac{s}{2} - 1} (\theta(u) - 1) \dd u &= \int_0^1 u^{\frac{s}{2} - \frac{3}{2}} \theta \left( \frac{1}{u} \right) \dd u - \int_0^1 u^{\frac{s}{2} - 1} \dd u \\ &= \int_1^\infty v^{-\frac{s + 1}{2}} \theta(v) \dd v - \int_0^1 u^{\frac{s}{2} - 1} \dd u &&(u = \frac{1}{v}) \\ &= \int_1^\infty v^{-\frac{s + 1}{2}} (\theta(v) - 1) \dd v + \ub{\int_1^\infty v^{-\frac{s + 1}{2}} \dd v}_{\frac{1}{\frac{s - 1}{2}}} - \ub{\int_0^1 u^{\frac{s}{2} - 1} \dd u}_{\frac{1}{\frac{s}{2}}} \end{align*} Plugging this into \eqref{lec13eq1}, we get \[ \pi^{-\frac{s}{2}} \Gamma \left( \frac{s}{2} \right) \zeta(s) = \half \int_1^\infty (u^{-\frac{s + 1}{2}} + u^{\frac{s}{2} - 1})(\theta(u) - 1) \dd u - \frac{1}{s(s - 1)} .\] Hence \[ \xi(s) = -\half + \frac{1}{4} s(s - 1) \int_1^\infty (u^{-\frac{s + 1}{2}} + u^{\frac{s}{2} - 1}) (\theta(u) - 1) \dd u \tag{$**$} \label{lec13eq2} .\] Since $|\theta(u) - 1| \vll e^{-\pi u}$, applying the criterion for integrals of analytic functions being analytic, we see that $\xi(s)$ is entire. So by analytic continuation, \eqref{lec13eq2} holds for all $s \in \Cbb$. Moreover, the expression for $\zeta(s)$ is symmetric with respect to $s \mapsto 1 - s$, so $\xi(s) = \xi(1 - s)$, $s \in \Cbb$. \end{proof} \begin{fccoro}[Zeroes and poles of $zeta$] The $\zeta$ function extends to a meromorphic function in $\Cbb$ and it has \begin{cenum}[(i)] \item Only one pole, which is a simple pole at $s = 1$, residue $1$. \item Simple zeroes at $s = -2, -4, -6, \ldots$. \item Any other zeroes satisfy $0 \le \Re(s) \le 1$. \end{cenum} \end{fccoro} \begin{proof} \phantom{} \begin{enumerate}[(ii) -- (iii)] \item Follows from the lemma on polynomial growth of $\zeta$ on vertical lines. \item[(ii) -- (iii)] We know $\zeta(s) \neq 0$ for $\Re(s) > 1$. We want to show that if $\zeta(s) = 0$ and $\Re(s) > 0$ then $s \in \{-2, -4, -6, \ldots\}$ and $s$ is a simple zero. Let $\Re(s) > 0$. By the functional equation for $\zeta$, \[ \zeta(s) = \ub{\pi^{s - \half}}_{\neq 0} \frac{\Gamma \left( \frac{1 - s}{2} \right)}{\Gamma \left( \frac{s}{2} \right)} \zeta(1 - s) .\] We claim that $\Gamma(s) \neq 0$ for all $s \in \Cbb$. By the Euler reflection formula, \[ \Gamma(s) \Gamma(1 - s) \sin(\pi s) = \pi ,\] for $s \in \Cbb$. If $\Gamma(s) = 0$, then $\Gamma$ has a pole at $1 - s$. Hence, $1 - s = -n$ for some $n \ge 0$ integer. But then $s = n + 1$, and $\Gamma(n + 1) = n! \neq 0$. We conclude that for $\Re(s) < 0$, \begin{align*} \zeta(s) = 0 &\iff \frac{s}{2} \text{ is a pole of $\Gamma$} \\ &\iff s = -2n, n \in \Nbb \end{align*} Since the poles of $\Gamma$ are simple, $\zeta$ has a simple zero at $s = -2n$, $n \in \Nbb$. \qedhere \end{enumerate} \end{proof} \subsection{Partial fraction approximation of $\zeta$} This is a formula for $\frac{\zeta'(s)}{\zeta(s)}$. For the proof we need a lemma. We write, for $z \in \Cbb$, $r > 0$, \begin{align*} B(z_0, r) &= \{z \in \Cbb : |z - z_0| < r\} \\ \ol{B(z_0, r)} &= \{z \in \Cbb : |z - z_0| \le r\} \\ \partial B(z_0, r) &= \{z \in \Cbb : |z - z_0| = r\} \end{align*} \begin{fclemma}[Borel-Caratheodory Theorem] \label{thm:borel-cara} Assuming: - $0 < r < R$ - $f$ analytic in $\ol{B(0, R)}$, with $f(0) = 0$ Then: \[ \sup_{|z| \le r} |f(z)| \le \frac{2r}{R - r} \sup_{|z| = R} \Re(f(z)) .\] \end{fclemma} \noproof \begin{proof} This is Exercise 10 on \es{2}. \end{proof}