%! TEX root = AN.tex % vim: tw=50 % 21/02/2025 09AM \begin{lemma*}[Functional equation for $\Gamma$] The $\Gamma$ function extends meromorphically to $\Cbb$, with the only poles being simple poles at $s = 0, -1, -2, \ldots$. Moreover: \begin{enumerate}[(i)] \item $\Gamma(s + 1) = s\Gamma(s)$ for $s \in \Cbb$. \item $\Gamma(s) \Gamma(1 - s) = \frac{\pi}{\sin(\pi s)}$ for all $s \in \Cbb$ (Euler reflection formula). \end{enumerate} \end{lemma*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item For $\Re(s) > 0$, by integration by parts, \[ \int_0^\infty t^s e^{-t} \dd t = s \int_0^\infty t^{s - 1} e^{-t} \dd t .\] This proves (i) for $\Re(s) > 0$. Now for any $k \in \Nbb$, for $\Re(s) > 0$ we have \[ \Gamma(s) = \frac{\Gamma(s + k)}{(s + k - 1) \cdots (s + 1) s} .\] The RHS is analytic for $\Re(s) > -k$, so can use analytic continuation to extend $\Gamma(s)$ meromorphically to $\Re(s) > -k$, with the only poles being simple poles at $s = 0, -1, \ldots, -k, -1$. Let $k \to \infty$. \item Since both sides are analytic in $\Cbb \setminus \Zbb$, by analytic continuation, it suffices to prove the formula for $0 < s < 1$. Now, for any $t > 0$, \begin{align*} t^{s - 1} \Gamma(s - 1) &= t^{s - 1} \int_0^\infty u^{-s} e^{-u} \dd u \\ &= \int_0^\infty v^{-s} e^{-vt} \dd t &&(u = vt) \end{align*} Multiply by $e^{-t}$ and integrate, and use Fubini to get \begin{align*} \Gamma(s) \Gamma(s - 1) &= \int_0^\infty \int_0^\infty v^{-s} e^{-vt} \dd v e^{-t} \dd t \\ &= \int_0^\infty \int_0^\infty e^{-(v + 1)t} \dd t v^{-s} \dd v \\ &= \int_0^\infty \frac{v^{-s}}{1 + v} \dd v \\ &= \int_{-\infty}^\infty \frac{e^{(1 - s)x}}{1 + e^x} \dd x &&(v = e^x) \end{align*} Hence, the remaining task is to show \[ \int_{-\infty}^\infty \frac{e^{(1 - s)x}}{1 + e^x} \dd x = \frac{\pi}{\sin(\pi s)} .\] We will do this next time. \end{enumerate} \end{proof}