%! TEX root = AN.tex % vim: tw=50 % 19/02/2025 09AM \begin{proof} Let $k \ge 0$ be an integer. We claim that there exist polynomials $P_k$, $Q_k$ of degree $\le k + 1$ and such that for $\Re(s) > 1$, \[ \zeta(s) = \frac{1}{s - 1} + Q_k(s) + s(s + 1) \cdots (s + k) \int_1^\infty \frac{P_k(\{t\})}{t^{s + k + 1}} \dd t \tag{$*$} \label{lec12eq1} .\] First assume \eqref{lec12eq1} holds. Then, since $P_k(\{t\}) \vll_k 1$, for $\Re(s) > -k - \half$, $|s - 1| \ge \frac{1}{10}$, \eqref{lec12eq1} gives $|\zeta(s)| \vll_k |s|^{k + 2} + 1$. So (ii) follows. For (i), using analytic continuation and \eqref{lec12eq1}, it suffices to show that the RHS of \eqref{lec12eq1} is meromorphic for $\Re(s) > -k$, with the only pole a simple one at $s = 1$. Suffices to show that \[ \int_1^\infty \frac{P_k(\{t\})}{t^{s + k + 1}} \dd t \] is analytic for $\Re(s) > -k$. This follows from the following criterion: If $U \subseteq \Cbb$ is open, $f : U \times \Rbb \to \Cbb$ is piecewise continuous, and if $s \mapsto f(s, t)$ is analytic in $U$ for any $t \in \Rbb$, then $\int_{\Rbb} f(s, t) \dd t$ is analytic in $U$, provided that $\int_{\Rbb} |f(s, t)| \dd t$ is bounded on compact subsets of $U$. Applying this with $f(s, t) = \frac{P_k(\{t\})}{t^{s + k + 1}} \indicator{[1, \infty)}$ concludes the proof of (i) assuming \eqref{lec12eq1}. We are left with proving \eqref{lec12eq1}. We use induction on $k$. Case $k = 0$: By \nameref{lemma:partsum}, \begin{align*} \zeta(s) &= \sum_{n = 1}^\infty \frac{1}{n^s} \\ &= s \int_1^\infty \frac{\left\lfloor u \right\rfloor}{u^{s + 1}} \dd u &&\text{(apply partial summation to $\sum_{n \le x} n^{-s}$ and let $x \to \infty$)} \\ &= s \int_1^\infty \frac{1}{u^s} \dd u - \int_1^\infty \frac{\{u\}}{u^{s + 1}} \dd u \\ &= \frac{1}{s - 1} + 1 - s \int_1^\infty \frac{\{u\}}{u^{s + 1}} \dd u \end{align*} Take $P_0(u) = u$, $Q_0(u) = 1$. Case $k + 1$ assuming $k$: Let \[ c_k = \int_0^1 P_k(\{t\}) \dd t .\] For $\Re(s) > 1$, we have \[ \zeta(s) = \frac{1}{s - 1} + Q_k(s) + c_k s(s + 1) \cdots (s + k - 1) + s(s + 1) \cdots (s + k) \int_1^\infty \frac{P_k(\{t\}) - c_k}{t^{s + k + 1}} \dd t .\] Let \[ P_{k + 1}(u) = -\int_0^u (P_k(t) - c_k) \dd t .\] This is a polynomial of degree $\le k + 2$. By integration by parts, \[ \int_1^\infty \frac{P_t(\{t\}) - c_k}{t^{s + k + 1}} \dd t = (s + k + 1) \int_1^\infty \frac{P_{k + 1}(\{u\})}{u^{s + k + 1}} \dd u .\] Substituting this into the previous equation, we get that case $k + 1$ follows. \end{proof} \subsubsection*{The Gamma function} \begin{fcdefnstar}[Gamma function] For $\Re(s) > 0$, let \[ \Gamma(s) = \int_0^\infty t^{s - 1} e^{-t} \dd t .\] \end{fcdefnstar} \begin{lemma}[] $\Gamma(s)$ is analytic for $\Re(s) > 0$. \end{lemma} \begin{proof} Apply the same criterion for integral of analytic function being analytic as in the previous lemma, taking $f(s, t) = t^{s - 1} e^{-t} \indicator{[0, \infty)}(t)$. Note that for $0 < \sigma_1 \le \Re(s) \le \sigma_2$, \[ \int_{\Rbb} |f(s, t)| \dd t \le \int_0^1 t^{\sigma_1 - 1} e^{-t} \dd t + \int_1^\infty t^{\sigma_2 - 1} e^{-t} \dd t < \infty . \qedhere \] \end{proof}