%! TEX root = AN.tex % vim: tw=50 % 14/02/2025 09AM We need to translate the condition $\rho_1 = 1$. Note that \begin{align*} \sum_{\substack{m \le z \\ m \equiv 0 \pmod{c}}} \mob(m) \zeta_m &= \sum_{d \mid P(z)} \rho_d g(d) \ub{\sum_{\substack{m \mid d \\ c \mid m}} \mob(m)}_{\sum_{m' \mid \frac{d}{c}} \mob(c) \mob(m') = \mob(d) \indicator{d = e}} \\ &= \mob(e) \rho_e g(e) \end{align*} Hence, \[ \rho_e = \frac{\mu(e)}{g(e)} \sum_{\substack{m \le 2 \\ m \equiv 0 \pmod{c}}} \mob(m) \zeta_m .\] Now, \[ \rho_1 = 1 = \sum_{m \le z} \mob(m) \zeta_m .\] By Cauchy-Schwarz, we then get \[ \left( \sum_{m \le z} h(m)^{-1} \zeta_m^2 \right) \left( \sum_{m \le z} \mob(m)^2 h(m) \right) \ge \left( \sum_{m \le z} \mob(m) \zeta_m \right)^2 = 1 .\] Hence \[ \sum_{m \le z} h(m)^{-1} \zeta_m^2 \ge \frac{1}{\sum_{m \le z} \mob(m)^2 h(m)} = \frac{1}{\sum_{m \le z} h(m)} .\] Equality holds for $T_m = \frac{h(m)}{G(z)}$, where $G(z) = \sum_{m \le z} h(m)$. We now check that with these $\zeta_m$, $\rho_d = 0$ for $d > z$. Note that \[ \rho_c = \frac{\mob(c)}{g(c) G(z)} \sum_{\substack{m \le z \\ m \equiv \pmod{c}}} \mob(m) h(m) .\] Hence, $\rho_c = 0$ for $c > 2$. This proves Claim 1. Now we prove Claim 2 ($|\rho_c| \le 1$). Note that any $m$ has at most one representation as $m = em'$, where $e \mid d$, $(m', d) = 1$ (for any $d \in \Nbb$). Now, \begin{align*} G(z) &\ge \sum_{c \mid d} \sum_{\substack{m' \le \frac{z}{c} \\ (m', d) = 1}} h(cm') \\ &= \sum_{c \mid d} h(c) \sum_{\substack{m' \le \frac{z}{c} \\ (m', d) = 1}} h(m') \\ &\ge \sum_{c \mid d} h(e) \sum_{\substack{m' \le \frac{z}{d} \\ (m', d) = 1}} h(m') \end{align*} Now, \[ \rho_d = \frac{\mob(d)^2 h(d)}{g(d) G(z)} \sum_{\substack{m' \le \frac{z}{d} \\ (m', d) = 1}} \mob(m') h(m') .\] Substituting the lower bound for $G(z)$, \[ |\rho_d| \le \frac{h(d)}{g(d) \sum_{c \mid d} h(e)} = 1 ,\] since $1 \conv h = \frac{h}{g}$. \end{proof} \begin{fclemma}[] Assuming: - $z \ge 3$ - $g : \Nbb \to [0, 1]$ \gls{mult} - for some $K, A \in \Rbb$ we have \[ \sum_{p \le z} g(p) \log p \le \kappa \log z + A .\] Then: \[ \frac{1}{\sum_{m \le z} h(m)} \le 2 \prod_{p \le z^{1 / (e\kappa + 1)}} (1 - g(p)) ,\] where $h$ is defined in terms of $g$ as in Selberg's sieve. \end{fclemma} \begin{proof} Note that for any $c \in (0, 1)$, \[ \sum_{m \le z} h(m) \ge \sum_{\substack{m \le z \\ m \mid P(z^c)}} h(m) = G(z, c) .\] Then \begin{align*} \prod_{\substack{p \le z^c \\ p \in \mathcal{P}}} (1 - g(p))^{-1} - G(z, c) &= \prod_{\substack{p \le z^c \\ p \in \mathcal{P}}} (1+ h(p)) - \sum_{\substack{m \le z \\ m \mid P(z^c)}} h(m) \\ &= \sum_{\substack{m > z \\ m \mid P(z^c)}} h(m) \end{align*} By Rankin's trick, \begin{align*} 1 - \prod_{p \le z^c} (1 - g(p)) G(z, c) &= \prod_{p \le z^c} (1 - g(p)) \sum_{\substack{m > z \\ m \mid P(z^c)}} h(m) \\ &\le \prod_{p \le z^c} (1 - g(p)) z^{-\frac{\lambda}{\log z}} \sum_{m \mid P(z^c)} h(m) m^{\frac{\lambda}{\log z}} &&\text{(for any $\lambda > 0$)} \\ &= \prod_{p \le z^c} (1 - g(p)) e^{-\lambda} \prod_{p \le z^c} (1 + h(p) p^{\frac{\lambda}{\log z}}) \\ &= e^{-\lambda} \prod_{p \le z^c} (1 - g(p) + g(p) p^{\frac{\lambda}{\log z}} \\ &\le e^{-\lambda} \exp \left( \sum_{p \le z^c} \ub{(p^{\frac{\lambda}{\log z}} - 1)}_{\le \frac{\lambda}{\log z} (\log p) p^{\frac{\lambda}{\log z}}} \right) \\ &\le \exp \left( -\lambda + \frac{\lambda}{\log z} \sum_{p \le z^c} g(p)(\log p) p^{\frac{\lambda}{\log z}} \right) &&(1 + t \le e^t) \\ &\le \exp \left( -\lambda + ce^{c\lambda} \lambda \kappa + \lambda e^{c\lambda} \frac{A}{\log z} \right) \end{align*} Choose $c = \frac{1}{\lambda}$ and $\lambda = e\kappa + 1$ to get the claim. \end{proof}