%! TEX root = AN.tex % vim: tw=50 % 24/01/2025 09AM % Lecture notes on Moodle % jt945@cam.ac.uk % Books: % - Apostol: Introduction to analytic number % theory % - Murty: Problems in analytic number theory % - Davenport: Multiplicative number theory \newpage What is analytic number theory? \begin{itemize} \item Study of number-theoretic problems using analysis (real, complex, Fourier, \ldots) \item Also tools from combinatorics, probability, \ldots \end{itemize} What kind of problems are studied? A variety of problems about integers, especially primes. \begin{itemize} \item Are there infinitely many primes? (Euclid, ~300BC) \item Are there infinitely many primes starting with 7 in base 10? (follows from prime number theorem) \item Are there infinitely many primes ending with 7 in base 10? (follows from Dirichlet's theorem) \item Are there infinitely many primes with 49\% of the digits being 7 in base 10? {would follow from the Riemann hypothesis} \item Are there infinitely many pairs of primes differing by 2? (twin prime conjecture) \end{itemize} Key feature: To show that a set (of primes) is infinite, want to estimate the number of elements $\le x$. \begin{definition*} Define \[ \pi(x) = |\{\text{primes $\le x$}\}| = \sum_{p \le x} 1 .\] \end{definition*} Euclid showed: $\lim_{x \to \infty} \pi(x) = \infty$. \begin{theorem*}[Prime number theorem] \[ \lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1 .\] \end{theorem*} $\pi(x) \sim \frac{x}{\log x}$. (Conjectured: Legendre, Gauss. Proved: Hadamard, de la Vall\'ee Poussin) \newpage \section{Estimating Primes} \begin{fcthmstar}[Euler] \glsnoundefn{thm:eul}{Euler's Theorem}{NA}% $\sum_p \frac{1}{p} = \infty$. \end{fcthmstar} \begin{proof} Consider $p_N = \prod_{p}^{N} \left( 1 + \frac{1}{p} + \frac{1}{p^2} + \cdots + \frac{1}{p^N} \right)$, for $N \in \Nbb = \{1, 2, 3, \ldots\}$. We have: \begin{align*} p_N &\ge \sum_{n = 1}^{N} \frac{1}{n} \\ &\ge \sum_{n = 1}^{N - 1} \int_{n}^{n + 1} \frac{\dd t}{t} \\ &= \int_{1}^{N - 1} \frac{\dd t}{t} \\ &= \log(N - 1) \end{align*} On the other hand, using $1 + x \le e^x$, so \begin{align*} p_N &\le \prod_{p \le N} \exp\left(\frac{1}{p} + \frac{1}{p^2} + \cdots + \frac{1}{p^N}\right) \\ &= \exp \left( \sum_{p \le N} \left( \frac{1}{p} + \frac{1}{p^2} + \cdots + \frac{1}{p^N} \right) \right) \\ &\le \exp \left( \sum_{p \le N} \left( \frac{1}{p} + \frac{1}{p^2 - p} \right) \right) \\ &\le \exp \left( C + \sum_{p \le N} \frac{1}{p} \right) \end{align*} Comparing these two bounds gives \[ \sum_{p \le N} \frac{1}{p} \ge \log \log (N - 1) - C .\] Then letting $N \to \infty$ gives the desired result. \end{proof} \begin{theorem*}[Chebyshev's Theorem] \glsnoundefn{cheb}{Chebyshev's Theorem}{NA}% \[ \pi(x) \le \frac{cx}{\log x} \] (for $x \ge 2$, where $c$ is an absolute constant). \end{theorem*} \begin{proof} Consider \begin{align*} S_N &= {2N \choose N} \\ &= \frac{(2N)!}{(N!)^2} \end{align*} for $N \in \Nbb$. We have \[ S_N \le \sum_{j = 0}^{2N} {2N \choose j} = (1 + 1)^{2N} = 4^N .\] On the other hand, \[ S_N = \prod_{p \le 2N} p^{\alpha^p(N)} \] where $\alpha_p(N)$ is the largest $j$ such that $p^j \mid {2N \choose N}$. We have $\alpha_p(N) = 1$ for $p \in (N, 2N]$. So \[ (\log 4) N \ge \sum_{N < p \le 2N} \log p .\] Take $N = \left\lceil \frac{x}{2} \right\rceil$, for $x \ge 2$. Hence \[ \sum_{x < p \le 2x} \log p \le (\log 4) \left\lceil \frac{x}{2} \right\rceil + \log x \le (\log 4) \frac{x}{2} + \log 4 + \log x .\] Then \begin{align*} \sum_{p \le x} &\le \sum_{0 \le j \le \frac{\log x}{\log 2}} \left( (\log 4) \frac{x}{2^{j + 2}} + \log x \right) &&(\text{telescoping summation, take $\frac{x}{2}, \frac{x}{2^2}, \frac{x}{2^3}, \ldots$}) \\ &\le (\log 4) x + (\log x)^2 + 1 \end{align*}