2 Elementary Estimates for Primes Recall from Lecture 1 p 1 p Euler s Theorem x x log x Chebyshev s Theorem 2 1 Merten s Theorems Theorem 2 1 Merten s Theorem Assuming that x 3 Then i p x log p p log x O 1 ii p x 1 p log log x M O 1 log x for some M iii p x 1 1 p c o 1 log x for some c 0 Remark Can show c e Proof i Let N x Consider N We have N N N N N N N e N the second inequality cn be proved by induction using 1 1 N N e Let v p k be the largest power of p dividing k Then N p N p v p N fundamental theorem of arithmetic log N p N v p N log p We have v p N j 1 N p j Indeed v p N k 1 N v p k k 1 N j 1 v p k j j 1 k 1 N v p k j j 1 N p j Now log N p N N p log p p N log p j 2 N p j p N N p O 1 log p O p N log p p 2 N geometric series N p N log p p O p N log p log N N N C h e b y s h e v O N since p log p p 2 N p N log p p O N Combine with log N N log N O N to get N log N O N N p N log p p O N Divide by N to get the result ii By Partial Summation this is 1 O 1 log x 2 x p t log p p t log t 2 d t Writing t p t log p p log t we get 1 O 1 log x 2 x d t t log t 2 x t t log t 2 d t 1 O 1 log x log log x log log 2 2 t t log t 2 d t O x t t log t 2 d t By part i x t t log t 2 d t x 1 t log t 2 d t 1 log x Take M 1 log log 2 2 t t log t 2 d t iii Use Taylor expansion log 1 y j 1 y j j to get log p x 1 1 p p x log 1 1 p p x 1 p p x j 2 p j j Write H p j 2 p j j We get p x 1 p H O p x j 2 p j j p 2 p x 1 p H O 1 x ii log log x H O 1 x Taking exponentials p x 1 1 p c o 1 log x 2 2 Sieve Methods General tools for estimating the number of primes or products of a few primes in a set Need information on the distribution of the set in residue classes Definition Sieve problem Let P Let P z p P p z p and let A Denote S A P z n A n P z 1 Problem Estimate S A P z Note that if A x 2 x S A x 1 2 A S A x 1 3 A p 1 p 2 p 1 p 2 x 1 3 Sieve hypothesis There exists a multiplicative g 0 1 and R d such that n A n 0 m o d d g d A R d for all square free d no repeated prime factors Example A 1 x P A d x d x d O 1 Then g d 1 d R d 1 S A x 1 2 p p x 1 2 x x O x 1 2 A n n 2 n x P Let d p 1 p r where p i are distinct primes Then A d n x n 0 or 2 m o d p i i r 2 r d x if d odd 2 r 1 d x O 2 r if d even by Chinese Remainder Theorem S A 2 x n 2 p 2 x 1 2 x p 2 p x p 2 O x 1 2 Here g p 1 p p 2 2 p p 2 and R d O 2 w d where w d is the number of prime factors of d distinct Lemma We have S A P z d P z d A d Proof Recall that n 1 1 n since is the inverse of 1 Hence S A P z n A n P z 1 n A d P z d n d d P z a A d Example Let x z n x n P z 1 Let P Let A 1 x Then A d x d O 1 By the previous lemma x z S A z d P z d x d O 1 x d P z d d O d P z d 1 x d P z d d O 2 z P z p 1 p 2 x p z 1 p p 1 O 2 2 fundamental theorem of arithmetic c o 1 log z x O 2 z Merten s theorem for some c 0 For 2 z log x x z c o 1 log z x Theorem Sieve of Erastothenes Legendre Assuming that A 1 x 2 z x Assume the Sieve Hypothesis Then S A P z A p 2 p P 1 g p O x 1 2 log x 1 2 2 log x 4 log z d x d P z R d 2 1 2 A e log x log z p z p P 1 g p e Proof Recall from previous lecture that S A P z d P z d x d A d since A d for d x d P z d x d g d A O d x d P z R d sieve hypothesis A d P z d g d O d x d P z R d A d P z d x g d A p z p P 1 g p O d x d P z R d A d P z d x g d We estimate the first error term using Cauchy Schwarz d x d P z R d d x d P z R d 2 1 2 d x d P z 1 1 2 Note that if d P z d x 1 2 then d log x 1 2 log z d number of distinct prime factors of d since z d d x 1 2 Hence 2 d 2 log x 2 log z d P z d x 1 2 Now we get d x d P z 1 2 log x 2 log z d x d P z 2 d d 2 log x 2 log z d x d 2 log x 2 log z x log x the last step is by Dirichlet s divisor problem d x d 1 o 1 x log x Substituting this in the first error term becomes as desired Now we estimate the second error term We have d P z d x g d x 1 log z d P z g d d 1 log z since d x in the sum Rankin s trick x 1 log z p z p P 1 g p p 1 log z z 1 log z e x 1 log z p z p P 1 e g p x 1 log z e log x log z p z p P 1 g p e 1 e y 1 y e Combining the error terms the claim follows Example Take A 1 x P Then g d 1 d R d O 1 so the sieve gives us S A P z x z x O 1 p z 1 1 p O x 1 2 log x 1 2 2 log x 4 log z x 1 2 x O 1 e log x log z p z 1 1 p e By Merten s Theorem p z 1 1 p C o 1 log z p z 1 1 p p z 1 1 p 1 1 C o 1 log z Hence x z c o 1 log z O x log x 1 2 2 log x 4 log z x e log x log z log z e Hence for 2 z exp log x 1 0 log log x x z c o 1 log z x This asymptotic in fact holds for z x o 1 In particular the Erastothenes Legendre sieve gives x x z z x log x log log x for z exp log x 1 0 log log x Not quite the Chebyshev bound x x log x 2 3 Selberg Sieve asymptotes good upper bound for primes Erastothenes Legendre Selberg Theorem 2 2 Selberg sieve Assuming that z 2 A finite P Assume the sieve hypothesis h 0 be the multiplicative function supported on square free numbers given on the primes by h p g p 1 g p p P 0 p P Then S A P z A d z h d d z 2 d P z 3 d R d Sieve hypothesis There is a multiplicative g 0 1 and R d such that A d g d A R d for all square free d 1 Proof Let d d be real numbers with 1 1 d 0 d z Then n P z 1 d n d P z d 2 If n P z 1 get 1 otherwise use 0 x 2 Summing over n A S A P z n A n P z 1 n A d n d P z d 2 d 1 d 2 P z d 1 d 2 n A d 1 d 2 n 1 A d 1 d 2 P z d 1 d 2 g d 1 d 2 d 1 d 2 P z d 1 d 2 R d 1 d 2 E sieve hypothesis m n means lcm m n We first estimate E E max k k 2 d 1 d 2 P z R d 1 d 2 max k k 2 d z k d P z d 1 d 2 d 1 d 2 d R d d d 1 d 2 We have d 1 d 2 d d 1 d 2 1 l z d 1 d 2 d l d 1 d 2 d 1 d 2 1 1 l d 1 d 2 d 1 d 1 l d 1 d 2 l d 1 d 2 3 d Therefore E d z z d P z 3 d R d max k k 2 Now it suffices to prove that there is a choice of d d satisfying such that Claim 1 d 1 d 2 P z d 1 d 2 g d 1 d 2 1 d z h d Claim 2 k 1 for all k Proof of claim 1 We have writing k d 1 d 2 d i d i k d 1 d 2 P z d 1 d 2 g d 1 d 2 k P z k 2 d 1 d 2 P z k d 1 d 2 1 k d 1 k d 2 g k d 1 d 2 k P z k 2 g k d 1 d 2 P z k d 1 d 2 1 k d 1 k d 2 g d 1 g d 2 multiplicativity We have d 1 d 2 1 c d 1 c d 2 c since 1 I so the previous expression becomes k P z k 2 g k c P z k c d 1 d 2 P z d 1 0 mod c d 2 0 mod c k d 1 k d 2 g d 1 g d 2 k P z k 2 g k c P z k k d P z k d 0 mod c 2 k P z k 2 g k 1 c P z k c d P z c k c k d g c k d 2 n z h m 1 d P z d 0 mod n d g d 2 multiplicativity d c d m c k d m d since 1 h 2 g check on primes 1 h p 1 g p 1 Now we get d 1 d 2 P z d 1 d 2 g d 1 d 2 m z h m 1 m 2 where m d P z d 0 mod m d g d Want to minimise this subject to We need to translate the condition 1 1 Note that m z m 0 mod c m m d P z d g d m d c m m m d c c m d d e e e g e Hence e e g e m 2 m 0 mod c m m Now 1 1 m z m m By Cauchy Schwarz we then get m z h m 1 m 2 m z m 2 h m m z m m 2 1 Hence m z h m 1 m 2 1 m z m 2 h m 1 m z h m Equality holds for T m h m G z where G z m z h m We now check that with these m d 0 for d z Note that c c g c G z m z m mod c m h m Hence c 0 for c 2 This proves Claim 1 Now we prove Claim 2 c 1 Note that any m has at most one representation as m e m where e d m d 1 for any d Now G z c d m z c m d 1 h c m c d h c m z c m d 1 h m c d h e m z d m d 1 h m Now d d 2 h d g d G z m z d m d 1 m h m Substituting the lower bound for G z d h d g d c d h e 1 since 1 h h g Lemma 2 3 Assuming that z 3 g 0 1 multiplicative for some K A we have p z g p log p log z A Then 1 m z h m 2 p z 1 e 1 1 g p where h is defined in terms of g as in Selberg s sieve Proof Note that for any c 0 1 m z h m m z m P z c h m G z c Then p z c p P 1 g p 1 G z c p z c p P 1 h p m z m P z c h m m z m P z c h m By Rankin s trick 1 p z c 1 g p G z c p z c 1 g p m z m P z c h m p z c 1 g p z log z m P z c h m m log z for any 0 p z c 1 g p e p z c 1 h p p log z e p z c 1 g p g p p log z e exp p z c p log z 1 log z log p p log z exp log z p z c g p log p p log z 1 t e t exp c e c e c A log z Choose c 1 and e 1 to get the claim The Brun Titchmarsh Theorem Theorem 2 4 Brun Titchmarsh Theorem Assuming that x 0 y 2 0 and y is large in terms of Then x y x 2 y log y Remark We expect x y x n o 1 y log x in a wide range of y e g y x for some 0 fixed The prime number theorem gives this for y x The Brun Titchmarsh Theorem gives an upper bound of the expected order for y x Proof Apply the Selberg sieve with A x x y P Note that for any d 1 a A a 0 m o d d y d O 1 Hence the sieve hypothesis holds with g d 1 d R d O 1 Now the function h in Selberg sieve is given on primes by h p g p 1 g p 1 p 1 1 p where is the Euler totient function In general h d d 2 1 d since is multiplicative Now for any z 2 Selberg sieve yields S A z y d z d 2 d O d z 2 3 d By Problem 11 on Example Sheet 1 the error term is O z 2 log z 2 Take z y 1 2 1 0 Then z 2 log z 2 y 1 2 1 0 2 log y 2 y 1 2 0 for y y 0 We estimate d z d 2 d d z d 2 d d d d z d 2 d p d 1 1 p 1 p 2 p p 1 p p n z 1 n since any n z has at least one representation as n d p 1 a 1 p k a k where d z is square free and p i d are primes and a 1 0 We have proved n z 1 n log z O 1 1 1 1 0 log z for z z 0 Putting everything together gives us x y x S A z z y 1 1 0 log z z y 1 2 0 2 y log y for y y 0